Computing Knapsack Solutions with Cardinality Robustness

  • Naonori Kakimura
  • Kazuhisa Makino
  • Kento Seimi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

Abstract

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number α ≤ 1, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items.

In this paper, we show that, for any ε > 0, the problem of deciding whether the knapsack problem admits a (ν + ε)-robust solution is weakly NP-hard, where ν denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a ν-robust knapsack solution [7], this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial time approximation scheme (FPTAS) for computing a max-robust knapsack solution.

Keywords

Knapsack Problem Robust Solution Fully Polynomial Time Approximation Scheme Greedy Solution Independence System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. European J. Oper. Res. 123, 333–345 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Dantzig, G.B.: Discrete-variable extremum problems. Ope. Res. 5, 266–277 (1957)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fujita, R., Kobayashi, Y., Makino, K.: Robust Matchings and Matroid Intersections. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 123–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Fukunaga, T., Halldórsson, M., Nagamochi, H.: Robust cost colorings. In: Proc. SODA 2008, pp. 1204–1212 (2008)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.E.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  7. 7.
    Hassin, R., Rubinstein, S.: Robust matchings. SIAM J. Discrete Math. 15, 530–537 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hassin, R., Segev, D.: Robust subgraphs for trees and paths. ACM Trans. Algorithms 2, 263–281 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. ACM 22(4), 463–468 (1975)MathSciNetMATHGoogle Scholar
  10. 10.
    Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proc. 7th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)Google Scholar
  11. 11.
    Kakimura, N., Makino, K.: Robust Independence Systems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 367–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kakimura, N., Makino, K., Seimi, K.: Computing Knapsack Solutions with Cardinality Robustness, Mathematical Engineering Technical Reports METR 2011-31, University of Tokyo (2011)Google Scholar
  13. 13.
    Kellerer, H., Pferschy, U.: A new fully polynomial approximation scheme for the knapsack problem. J. Comb. Optim. 3, 59–71 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math. 2, 65–74 (1978)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lawler, E.G.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4, 339–356 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lin, G., Nagarajan, C., Rajarama, R., Williamson, D.: A general approach for incremental approximation and hierarchical clustering. SIAM J. Comput. 39, 3633–3669 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Magazine, M.J., Oguz, O.: A fully polynomial approximation algorithm for the 0 − 1 knapsack problem. European J. Oper. Res. 8, 270–273 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32, 816–832 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pisinger, D., Toth, P.: Handbook of Combinatorial Optimization, pp. 1–89. Kluwer, Norwell (1998)Google Scholar
  21. 21.
    Rado, R.: Note on independence relations. Proc. Lond. Math. Soc. 7, 300–320 (1957)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Naonori Kakimura
    • 1
  • Kazuhisa Makino
    • 1
  • Kento Seimi
    • 1
  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations