Parameterized Complexity of the Firefighter Problem

  • Cristina Bazgan
  • Morgan Chopin
  • Michael R. Fellows
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

Abstract

In this paper we study the parameterized complexity of the firefighter problem. More precisely, we show that Saving k -Vertices and its dual Saving All But k -Vertices are both W[1]-hard for parameter k even for bipartite graphs. We also investigate several cases for which the firefighter problem is tractable. For instance, Saving k -Vertices is fixed-parameter tractable on planar graphs for parameter k. Moreover, we prove a lower bound to polynomial kernelization for Saving All But k -Vertices.

Keywords

Bipartite Graph Planar Graph Parameterized Complexity Polynomial Kernel Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximation Algorithms for the Firefighter Problem: Cuts Over Time and Submodularity. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 974–983. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems without Polynomial Kernels. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Cai, L., Verbin, E., Yang, L.: Firefighting on Trees (1 − 1/e)–Approximation, Fixed Parameter Tractability and a Subexponential Algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Courcelle, B.: The monadic second-order logic of graphs. III. tree-decompositions, minors and complexity issues. RAIRO Informatique Théorique Appliquée 26(3), 257–286 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cygan, M., Fomin, F., Van Leeuwen, E.J.: Parameterized complexity of firefighting revisited. In: Proceedings of the 6th International Symposium on Parameterized and Exact Computation (IPEC 2011) (to appear, 2011)Google Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Fellows, M.R., Szeider, S., Wrightson, G.: On finding short resolution refutations and small unsatisfiable subsets. Theoretical Computer Science 351, 351–359 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discrete Mathematics 307(16), 2094–2105 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  10. 10.
    Hartnell, B.: Firefighter! an application of domination, Presentation. In: 10th Conference on Numerical Mathematics and Computing. University of Manitoba in Winnipeg, Canada (1995)Google Scholar
  11. 11.
    King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Mathematics 310(3), 614–621 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mathieson, L., Szeider, S.: Parameterized Graph Editing with Chosen Vertex Degrees. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 13–22. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cristina Bazgan
    • 1
    • 2
  • Morgan Chopin
    • 1
  • Michael R. Fellows
    • 3
  1. 1.LAMSADEUniversité Paris-DauphineFrance
  2. 2.Institut Universitaire de FranceFrance
  3. 3.Charles Darwin UniversityAustralia

Personalised recommendations