On the Parameterized Complexity of Consensus Clustering

  • Martin Dörnfelder
  • Jiong Guo
  • Christian Komusiewicz
  • Mathias Weller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


Given a collection \({\mathcal{C}}\) of partitions of a base set S, the NP-hard Consensus Clustering problem asks for a partition of S which has a total Mirkin distance of at most t to the partitions in \({\mathcal{C}}\), where t is a nonnegative integer. We present a parameterized algorithm for Consensus Clustering with running time \(O(4.24^k\cdot k^3+|{\mathcal C}|\cdot |S|^2)\), where \(k:=t/|{\mathcal{C}}|\) is the average Mirkin distance of the solution partition to the partitions of \({\mathcal{C}}\). Furthermore, we strengthen previous hardness results for Consensus Clustering, showing that Consensus Clustering remains NP-hard even when all input partitions contain at most two subsets. Finally, we study a local search variant of Consensus Clustering, showing W[1]-hardness for the parameter “radius of the Mirkin-distance neighborhood”. In the process, we also consider a local search variant of the related Cluster Editing problem, showing W[1]-hardness for the parameter “radius of the edge modification neighborhood”.


Search Tree Child Node Parameterized Complexity Cluster Graph Consensus Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertolacci, M., Wirth, A.: Are approximation algorithms for consensus clustering worthwhile? In: Proc. 7th SDM, pp. 437–442. SIAM (2007)Google Scholar
  3. 3.
    Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonizzoni, P., Vedova, G.D., Dondi, R.: A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Proc. 11th ICTCS (2009)Google Scholar
  5. 5.
    Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of correlation clustering and consensus clustering. J. Comput. Syst. Sci. 74(5), 671–696 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coleman, T., Wirth, A.: A polynomial time approximation scheme for k-consensus clustering. In: Proc. 21st SODA, pp. 729–740. SIAM (2010)Google Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1) (2007)Google Scholar
  10. 10.
    Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refinement. In: Proc. 10th ALENEX, pp. 109–117. SIAM (2008)Google Scholar
  11. 11.
    Karpinski, M., Schudy, W.: Linear time approximation schemes for the Gale-Berlekamp game and related minimization problems. In: Proc. 41st STOC, pp. 313–322. ACM (2009)Google Scholar
  12. 12.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Monti, S., Tamayo, P., Mesirov, J.P., Golub, T.R.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52(1-2), 91–118 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  15. 15.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1-2), 173–182 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wakabayashi, Y.: The complexity of computing medians of relations. Resenhas 3(3), 323–350 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Dörnfelder
    • 1
  • Jiong Guo
    • 1
  • Christian Komusiewicz
    • 2
  • Mathias Weller
    • 2
  1. 1.Universität des SaarlandesSaarbrückenGermany
  2. 2.Institut für Softwaretechnik und Theoretische InformatikTechnische Universität BerlinBerlinGermany

Personalised recommendations