Contraction-Based Steiner Tree Approximations in Practice

  • Markus Chimani
  • Matthias Woste
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


In this experimental study we consider contraction-based Steiner tree approximations. This class contains the only approximation algorithms that guarantee a constant approximation ratio below 2 and still may be applicable in practice. Despite their vivid evolution in theory, these algorithms have, to our knowledge, never been thoroughly investigated in practice before, which is particularly interesting as most of these algorithms’ approximation guarantees only hold when some (constant) parameter k tends to infinity, while the running time is exponentially dependent on this very k.

We investigate different implementation aspects and parameter choices which finally allow us to construct algorithms feasible for practical use. Then we compare these algorithms against each other and against state-of-the-art approaches.


Approximation Algorithm Pareto Front Approximation Ratio Steiner Tree Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, M.J., Robins, G.: New performance-driven FPGA routing algorithms. IEEE Trans. Computer-aided Design of Integrated Circuits and Systems 15(2), 1505–1517 (1996)CrossRefGoogle Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem. Journal of Algorithms 17(3), 381–408 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bern, M., Plassmann, P.: The steiner problem with edge lengths 1 and 2. Information Processing Letters 32(4), 171–176 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for steiner tree. In: STOC 2010, pp. 583–592. ACM (2010)Google Scholar
  6. 6.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the steiner problem in graphs. In: SODA 1999, pp. 448–453. SIAM (1999)Google Scholar
  8. 8.
    Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  10. 10.
    Karpinski, M., Zelikovsky, A.: New approximation algorithms for the steiner tree problems. Journal of Combinatorial Optimization 1, 47–65 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koch, T., Martin, A.: Solving steiner tree problems in graphs to optimality. Networks 32, 207–232 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on steiner tree problems in graphs. Technical Report ZIB-Report 00-37 (2000),
  13. 13.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for steiner trees. Acta Informatica 15(2), 141–145 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mehlhorn, K.: A faster approximation algorithm for the steiner problem in graphs. Information Processing Letters 27(3), 125–128 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Open Graph Drawing Framework (OGDF) v.2010.10,
  16. 16.
    Poggi de Aragão, M., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: Hybrid local search for the Steiner problem in graphs. In: MIC 2001, pp. 429–433 (2001)Google Scholar
  17. 17.
    Poggi de Aragão, M., Uchoa, E., Werneck, R.F.: Dual heuristics on the exact solution of large steiner problems. Elect. Notes in Discr. Math. 7, 150–153 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Poggi de Aragão, M., Werneck, R.F.F.: On the Implementation of MST-Based Heuristics for the Steiner Problem in Graphs. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 259–272. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Polzin, T.: Algorithms for the Steiner Problem in networks. PhD thesis, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I (2003)Google Scholar
  20. 20.
    Polzin, T., Daneshmand, S.V.: Primal-dual Approaches to the Steiner Problem. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 214–225. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Polzin, T., Vahdati Daneshmand, S.: Improved algorithms for the steiner problem in networks. Discrete Applied Mathematics 112(1-3), 263–300 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Prömel, H., Steger, A.: RNC-Approximation Algorithms for the Steiner Problem. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: SODA 2000, pp. 770–779. SIAM (2000)Google Scholar
  24. 24.
    Robins, G., Zelikovsky, A.: Minimum steiner tree construction. In: The Handbook of Algorithms for VLSI Phys. Design Automation, pp. 487–508. CRC Press (2009)Google Scholar
  25. 25.
    Standard Performance Evaluation Corporation (SPEC), (last accessed April 15, 2011)
  26. 26.
    Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem in graphs. Math. Japonica 24(6), 573–577 (1980)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Uchoa, E., Poggi de Aragão, M., Ribeiro, C.C.: Preprocessing steiner problems from VLSI layout. Networks 40(1), 38–50 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Uchoa, E., Werneck, R.F.: Fast local search for steiner trees in graphs. In: ALENEX 2010, pp. 1–10. SIAM (2010)Google Scholar
  29. 29.
    Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Applied Mathematics 40(1), 45–72 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Winter, P., MacGregor Smith, J.: Path-distance heuristics for the steiner problem in undirected networks. Algorithmica 7, 309–327 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wong, R.: A dual ascent approach for steiner tree problems on a directed graph. Mathematical Programming 28, 271–287 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zelikovsky, A.: An 11/6-approximation algorithm for the network steiner problem. Algorithmica 9(5), 463–470 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zelikovsky, A.: A faster approximation algorithm for the steiner tree problem in graphs. Information Processing Letters 46(2), 79–83 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zelikovsky, A.: Better approximation bounds for the network and euclidean steiner tree problems. Technical report (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Chimani
    • 1
  • Matthias Woste
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaGermany

Personalised recommendations