ISAAC 2011: Algorithms and Computation pp 574-583

# Folding Equilateral Plane Graphs

• Zachary Abel
• Erik D. Demaine
• Martin L. Demaine
• Sarah Eisenstat
• Jayson Lynch
• Tao B. Schardl
• Isaac Shapiro-Ellowitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

## Abstract

We consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, such reconfiguration is known to be impossible for linear (nonequilateral) trees and for (nonlinear) equilateral trees. Second, under instantaneous folding motions, we show that an equilateral plane graph has a noncrossing linear folded state if and only if it is bipartite. Not only is the equilateral constraint necessary for this result, but we show that it is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear folded state. Equivalently, we show strong NP-completeness of deciding whether an abstract metric polyhedral complex with one central vertex has a noncrossing flat folded state with a specified “outside region”. By contrast, the analogous problem for a polyhedral manifold with one central vertex (single-vertex origami) is only weakly NP-complete.

## Keywords

Plane Graph Edge Length Linear State Cyclic Order Oriented Edge
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Ballinger, B., Charlton, D., Demaine, E.D., Demaine, M.L., Iacono, J., Liu, C.-H., Poon, S.-H.: Minimal Locked Trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 61–73. Springer, Heidelberg (2009)
2. 2.
Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A., O’Rourke, J., Robbins, S., Streinu, I., Toussaint, G., Whitesides, S.: A note on reconfiguring tree linkages: Trees can lock. Discrete Applied Mathematics 117(1-3), 293–297 (2002)
3. 3.
Connelly, R., Demaine, E.D., Rote, G.: Infinitesimally locked self-touching linkages with applications to locked trees. In: Calvo, J., Millett, K., Rawdon, E. (eds.) Physical Knots: Knotting, Linking, and Folding of Geometric Objects in R3, pp. 287–311. American Mathematical Society (2002)Google Scholar
4. 4.
de Berg, M., Khosravi, A.: Optimal Binary Space Partitions in the Plane. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010)
5. 5.
Demaine, E.D., Devadoss, S.L., Mitchell, J.S.B., O’Rourke, J.: Continuous foldability of polygonal paper. In: Proceedings of the 16th Canadian Conference on Computational Geometry, Montréal, Canada, pp. 64–67 (August 2004)Google Scholar
6. 6.
Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press (2007)Google Scholar
7. 7.
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972)
8. 8.
Kawasaki, T.: On the relation between mountain-creases and valley-creases of a flat origami. In: Huzita, H. (ed.) Proceedings of the 1st International Meeting of Origami Science and Technology, pp. 229–237, Ferrara, Italy (December 1989); An unabridged Japanese version appeared in Sasebo College of Technology Report 27, 153–157 (1990)Google Scholar
9. 9.
Streinu, I., Whiteley, W.: Single-Vertex Origami and Spherical Expansive Motions. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 161–173. Springer, Heidelberg (2005)

## Authors and Affiliations

• Zachary Abel
• 1
• Erik D. Demaine
• 2
• Martin L. Demaine
• 2
• Sarah Eisenstat
• 2
• Jayson Lynch
• 2
• Tao B. Schardl
• 2
• Isaac Shapiro-Ellowitz
• 3
1. 1.MIT Department of MathematicsUSA
2. 2.MIT Computer Science and Artificial Intelligence LaboratoryUSA
3. 3.University of Massachusetts BostonUSA