Capacitated Domination: Constant Factor Approximations for Planar Graphs

  • Mong-Jen Kao
  • D. T. Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


We consider the capacitated domination problem, which models a service-requirement assigning scenario and which is also a generalization of the dominating set problem. In this problem, we are given a graph with three parameters defined on the vertex set, which are cost, capacity, and demand. The objective of this problem is to compute a demand assignment of least cost, such that the demand of each vertex is fully-assigned to some of its closed neighbours without exceeding the amount of capacity they provide. In this paper, we provide the first constant factor approximation for this problem on planar graphs, based on a new perspective on the hierarchical structure of outer-planar graphs. We believe that this new perspective and technique can be applied to other capacitated covering problems to help tackle vertices of large degrees.


Planar Graph Closed Neighbour Facility Location Problem Outerplanar Graph Vertex Cover Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41, 153–180 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bose, P.: On embedding an outer-planar graph in a point set. CGTA: Computational Geometry: Theory and Applications 23, 2002 (1997)MathSciNetGoogle Scholar
  3. 3.
    Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for capacitated facility location problems. Math. Program. 102, 207–222 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chuzhoy, J.: Covering problems with hard capacities. SIAM J. Comput. 36, 498–515 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated Domination Faster Than O(2n). In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 74–80. Springer, Heidelberg (2010), doi:10.1007/978-3-642-13731-0_8Google Scholar
  6. 6.
    Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated Domination and Covering: A Parameterized Perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approximation algorithm for vertex cover with hard capacities. J. Comput. Syst. Sci. 72, 16–33 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding in bipartite graphs. In: FOCS 2002, pp. 323–332 (2002)Google Scholar
  9. 9.
    Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algorithms 48(1), 257–270 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hochbaum, D.: Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing 11, 555–556 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. In: The 5th Annual ACM Symposium on Theory of Computing, pp. 38–49 (1973)Google Scholar
  12. 12.
    Kao, M.-J., Chen, H.-L.: Approximation Algorithms for the Capacitated Domination Problem. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 185–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Kao, M.-J., Lee, D.: Capacitated domination: Constant factor approximation for planar graphs (manuscript, 2011),
  14. 14.
    Kao, M.-J., Liao, C.-S., Lee, D.T.: Capacitated domination problem. Algorithmica 60, 274–300 (2011), doi:10.1007/s00453-009-9336-xMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liedloff, M., Todinca, I., Villanger, Y.: Solving Capacitated Dominating Set by Using Covering by Subsets and Maximum Matching. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 88–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems (extended abstract). In: STOC 1997, pp. 265–274 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mong-Jen Kao
    • 1
  • D. T. Lee
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations