ISAAC 2011: Algorithms and Computation pp 20-29

# Improved Approximations for Buy-at-Bulk and Shallow-Light k-Steiner Trees and (k,2)-Subgraph

• M. Reza Khani
• Mohammad R. Salavatipour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

## Abstract

In this paper we give improved approximation algorithms for some network design problems. In the Bounded-Diameter or Shallow-Light k-Steiner tree problem (SLkST), we are given an undirected graph G = (V,E) with terminals T ⊆ V containing a root r ∈ T, a cost function c:E → ℝ + , a length function ℓ:E → ℝ + , a bound L > 0 and an integer k ≥ 1. The goal is to find a minimum c-cost r-rooted Steiner tree containing at least k terminals whose diameter under ℓ metric is at most L. The input to the Buy-at-Bulk k-Steiner tree problem (BBkST) is similar: graph G = (V,E), terminals T ⊆ V, cost and length functions c,ℓ:E → ℝ + , and an integer k ≥ 1. The goal is to find a minimum total cost r-rooted Steiner tree H containing at least k terminals, where the cost of each edge e is c(e) + ℓ(ef(e) where f(e) denotes the number of terminals whose path to root in H contains edge e. We present a bicriteria (O(log2n),O(logn))-approximation for SLkST: the algorithm finds a k-Steiner tree of diameter at most O(L·logn) whose cost is at most $$O(\log^2 n\cdot\mbox{\sc opt}^*)$$ where $$\mbox{\sc opt}^*$$ is the cost of an LP relaxation of the problem. This improves on the algorithm of [9] with ratio (O(log4n), O(log2n)). Using this, we obtain an O(log3n)-approximation for BBkST, which improves upon the O(log4n)-approximation of [9]. We also consider the problem of finding a minimum cost 2-edge-connected subgraph with at least k vertices, which is introduced as the (k,2)-subgraph problem in [14]. We give an O(logn)-approximation algorithm for this problem which improves upon the O(log2n)-approximation of [14].

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Andrews, M., Zhang, L.: Approximation algorithms for access network design. Algorithmica 32(2), 197–215 (2002); Preliminary version in Proc. of IEEE FOCS (1998)
2. 2.
Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, FOCS 1997 (1997)Google Scholar
3. 3.
Bateni, M., Chuzhoy, J.: Approximation Algorithms for the Directed k-Tour and k-stroll Problems. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302. Springer, Heidelberg (2010)Google Scholar
4. 4.
Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting High Log-Densities – an O(n 1/4)-Approximation for Densest k-Subgraph. In: Proceedings of Symposium on the Theory of Computing, STOC (2010)Google Scholar
5. 5.
Chekuri, C., Hajiaghayi, M., Kortsarz, G., Salavatipour, M.: Approximation Algorithms for Non-Uniform Buy-at-Bulk Network Design. SIAM J. on Computing 39(5), 1772–1798 (2009)
6. 6.
Chekuri, C., Khanna, S., Naor, J.: A Deterministic Approximation Algorithm for the Cost-Distance Problem Short paper. In: Proc. of ACM-SIAM SODA, pp. 232–233 (2001)Google Scholar
7. 7.
Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing (STOC), pp. 396–402 (2005)Google Scholar
8. 8.
Gupta, A., Kumar, A., Pal, M., Roughgarden, T.: Approximation via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem. In: Proceedings of the 44rd Symposium on Foundations of Computer Science, FOCS 2003 (2003)Google Scholar
9. 9.
Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximating buy-at-bulk and shallow-light k-steiner tree. Algorithmica 53(1), 89–103 (2009)
10. 10.
Hassin, R.: Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research 17(1), 36–42 (1992)
11. 11.
Khani, M.R., Salavatipour, M.R.: Approximation Algorithms for Min-max Tree Cover and Bounded Tree Cover Problems. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 302–314. Springer, Heidelberg (2011)
12. 12.
Kortsarz, G., Nutov, Z.: Approximating Some Network Design Problems with Node Costs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 231–243. Springer, Heidelberg (2009)
13. 13.
Kumar, A., Gupta, A., Roughgarden, T.: A Constant-Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem. In: Proceedings of FOCS 2002 (2002)Google Scholar
14. 14.
Lau, L., Naor, S., Salavatipour, M.R., Singh, M.: Survivable network design with degree or order constraints. SIAM J. on Computing 39(3), 1062–1087 (2009)
15. 15.
Marathe, M., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D., Hunt, H.B.: Bicriteria network design. Journal of Algorithms 28(1), 142–171 (1998)
16. 16.
Meyerson, A., Munagala, K., Plotkin, S.: Cost-Distance: Two Metric Network Design. SIAM J. on Computing, 2648–1659 (2008)Google Scholar
17. 17.
Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrants, D.J., Ravi, S.S.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9(2), 178–200 (1996)
18. 18.
Salman, F.S., Cheriyan, J., Ravi, R., Subramanian, S.: Approximating the Single-Sink Link-Installation Problem in Network Design. SIAM J. on Optimization 11(3), 595–610 (2000)
19. 19.
Schrijver, A.: Combinatorial optimization: Polyhedra and Efficiency. Springer, Berlin (2003)
20. 20.
Seymour, P.D.: In Graph Theory and related topics. In: Proc. Waterloo, pp. 341–355. Academic Press (1977/1979)Google Scholar