ISAAC 2011: Algorithms and Computation pp 354-363

# Parameterized Algorithms for Inclusion of Linear Matchings

• Sylvain Guillemot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

## Abstract

A linear matching consists of 2n vertices ordered linearly, together with n vertex-disjoint edges. In this article, we study the Linear Matching Inclusion problem, which takes two linear matchings, called the pattern and the target, and asks if there is an order-preserving mapping of the pattern into the target. We consider several parameterizations of this problem, for which we obtain parameterized algorithms and hardness results. In addition, we settle the parameterized complexity of the related Nesting-Free 2-Interval Pattern problem.

## Keywords

Parameterized Complexity Parameterized Algorithm Hardness Result Nest Depth Nest Relation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Ahal, S., Rabinovich, Y.: On Complexity of the Subpattern Problem. SIAM J. Discrete Math. 22(2), 629–649 (2008)
2. 2.
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
3. 3.
Evans, P.: Algorithms and Complexity fo Annotated Sequence Analysis. PhD thesis, University of Victoria, Canada (1999)Google Scholar
4. 4.
Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)
5. 5.
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)
6. 6.
Jiang, M.: A PTAS for the Weighted 2-Interval Pattern Problem over the Preceding-and-Crossing Model. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 378–387. Springer, Heidelberg (2007)
7. 7.
Jiang, M.: On the Parameterized Complexity of Some Optimization Problems Related to Multiple-Interval Graphs. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 125–137. Springer, Heidelberg (2010)
8. 8.
Li, S.C., Li, M.: On two open problems of 2-interval patterns. Theoretical Computer Science 410(24-25), 2410–2423 (2009)
9. 9.
Marx, D., Schlotter, I.: Parameterized Complexity of the Arc-Preserving Subsequence Problem. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 244–255. Springer, Heidelberg (2010)
10. 10.
Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312(2-3), 223–249 (2004)