Fixed-Parameter Complexity of Feedback Vertex Set in Bipartite Tournaments

  • Sheng-Ying Hsiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


Let G be an n-node bipartite tournament, i.e., a complete bipartite graph, each of whose edges has an orientation. We address the fixed-parameter complexity of the NP-complete problem of determining, for any given parameter k, whether G admits a k-node subset whose removal from G yields an acyclic graph. The best previously known upper bound, due to Sasatte, is \(O(3^k\cdot \mbox{poly}(n))\). In this paper, we show that the fixed-parameter complexity is \(O(2^k\cdot\mbox{poly}(n))\).


Main Lemma Successive Sequence Canonical Sequence Node Sequence Minimum Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonsma, P., Lokshtanov, D.: Feedback Vertex Set in Mixed Graphs. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 122–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Cai, M.-C., Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tournaments. SIAM Journal on Computing 30(6), 1993–2007 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cai, M.-C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Mathematics of Operations Research 27(2), 361–371 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM 55(5), 1–19 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (to appear, 2011)Google Scholar
  7. 7.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truss, A.: Fixed-parameter tractability results for feedback set problems in tournaments. Journal of Discrete Algorithms 8(1), 76–86 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gaspers, S., Mnich, M.: Feedback vertex sets in tournaments. In: de Berg, M., Meyer, U. (eds.) Proceedings of the 18th Annual European Symposium on Algorithms, pp. 267–277 (2010)Google Scholar
  10. 10.
    Guo, J., Hüffner, F., Moser, H.: Feedback arc set in bipartite tournaments is NP-complete. Information Processing Letters 102(2-3), 62–65 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gupta, S.: Feedback arc set problem in bipartite tournaments. Information Processing Letters 105(4), 150–154 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hirschberg, D.S., Larmore, L.L.: The set-set LCS problem. Algorithmica 4(4), 503–510 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  14. 14.
    Karpinski, M., Schudy, W.: Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theoretical Computer Science 351(3), 446–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sasatte, P.: Improved approximation algorithm for the feedback set problem in a bipartite tournament. Operations Research Letters 36(5), 602–604 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sasatte, P.: Improved FPT algorithm for feedback vertex set problem in bipartite tournament. Information Processing Letters 105(3), 79–82 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Speckenmeyer, E.: On Feedback Problems in Digraphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 218–231. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  19. 19.
    van Zuylen, A.: Linear programming based approximation algorithms for feedback set problems in bipartite tournaments. Theoretical Computer Science 412(23), 2556–2561 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    van Zuylen, A., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 405–414 (2007)Google Scholar
  21. 21.
    van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Mathematics of Operations Research 34(3), 594–620 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems. PhD thesis, Department of Computer and Information Science, Linköpings universitet (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sheng-Ying Hsiao
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaiwan

Personalised recommendations