Skip to main content

Encoding 2D Range Maximum Queries

  • Conference paper
Book cover Algorithms and Computation (ISAAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7074))

Included in the following conference series:

Abstract

We consider the two-dimensional range maximum query (2D-RMQ) problem: given an array A of ordered values, to pre-process it so that we can find the position of the largest element in a (user-specified) range of rows and range of columns. We focus on determining the effective entropy of 2D-RMQ, i.e., how many bits are needed to encode A so that 2D-RMQ queries can be answered without access to A. We give tight upper and lower bounds on the expected effective entropy for the case when A contains independent identically-distributed random values, and new upper and lower bounds for arbitrary A, for the case when A contains few rows. The latter results improve upon upper and lower bounds by Brodal et al. (ESA 2010). We also give some efficient data structures for 2D-RMQ whose space usage is close to the effective entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Fischer, J., Lewenstein, M.: Two-Dimensional Range Minimum Queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidimensional arrays. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 150–160. SIAM (2010)

    Google Scholar 

  3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brodal, G.S., Davoodi, P., Rao, S.S.: On Space Efficient Two Dimensional Range Minimum Data Structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26, 65–74 (1997)

    Article  Google Scholar 

  6. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian Trees and Range Minimum Queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Farzan, A., Munro, J.I.: A Uniform Approach Towards Succinct Representation of Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Ferragina, P., Manzini, G.: Indexing compressed text. JACM 52, 552–581 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM (1984)

    Google Scholar 

  11. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range maximum queries. Preprint (2011), http://arxiv.org/abs/1109.2885v1

  12. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and string matching. SICOMP 35(2), 378–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howard, P.G., Vitter, J.S.: Arithmetic coding for data compression. In: Encyclopedia of Algorithms (2008)

    Google Scholar 

  14. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE (1989)

    Google Scholar 

  15. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing Systems 41(4), 589–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S. (2011). Encoding 2D Range Maximum Queries. In: Asano, T., Nakano, Si., Okamoto, Y., Watanabe, O. (eds) Algorithms and Computation. ISAAC 2011. Lecture Notes in Computer Science, vol 7074. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25591-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25591-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25590-8

  • Online ISBN: 978-3-642-25591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics