ISAAC 2011: Algorithms and Computation pp 120-129

# Recognizing Polar Planar Graphs Using New Results for Monopolarity

• Van Bang Le
• Ragnar Nevries
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

## Abstract

Polar and monopolar graphs are natural generalizations of bipartite or split graphs. A graph G = (V,E) is polar if its vertex set admits a partition V = A ∪ B such that A induces a complete multipartite and B the complement of a complete multipartite graph. If A is even a stable set then G is called monopolar.

Recognizing general polar or monopolar graphs is NP-complete and, as yet, efficient recognition is available only for very few graph classes.

This paper considers monopolar and polar graphs that are also planar. On the one hand, we show that recognizing these graphs remains NP-complete, on the other hand we identify subclasses of planar graphs on which polarity and monopolarity can be checked efficiently. The new NP-completeness results cover very restricted graph classes and are sharper than all previous known cases. On the way to the positive results, we develop new techniques for efficient recognition of subclasses of monopolar graphs. These new results extend nearly all known results for efficient monopolar recognition.

## Keywords

Planar Graph Chordal Graph Graph Class Free Graph Split Graph
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)
2. 2.
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8, 121–123 (1979); Erratum 14, 195 (1982)
3. 3.
Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19, 247–253 (1989)
4. 4.
Chernyak, Z.A., Chernyak, A.A.: About recognizing (α,β) classes of polar graphs. Discrete Math. 62, 133–138 (1986)
5. 5.
Churchley, R., Huang, J.: Line-polar graphs: characterization and recognition (2009) (manuscript); SIAM Journal on Discrete Mathematics (accepted)Google Scholar
6. 6.
Churchley, R., Huang, J.: The polarity and monopolarity of claw-free graphs (2010) (manuscript) (submitted for publication)Google Scholar
7. 7.
Courcelle, B.: The monadic second-order logic of graphs. III. Tree-decompositions, minors and complexity issues. RAIRO Inform. Theor. Appl. 26, 257–286 (1992)
8. 8.
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)
9. 9.
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)
10. 10.
Ekim, T., Heggernes, P., Meister, D.: Polar Permutation Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 218–229. Springer, Heidelberg (2009)
11. 11.
Ekim, T., Hell, P., Stacho, J., de Werra, D.: Polarity of chordal graphs. Discrete Math. 156, 2469–2479 (2008)
12. 12.
Ekim, T., Huang, J.: Recognizing line-polar bipartite graphs in time O(n). Discrete Appl. Math. (2010)Google Scholar
13. 13.
Ekim, T., Mahadev, N.V.R., de Werra, D.: Polar cographs. Discrete Appl. Math. 156, 1652–1660 (2008)
14. 14.
Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Computing 5, 691–703 (1976)
15. 15.
Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Combin. 11, #R46 (2004)Google Scholar
16. 16.
Huang, J., Xu, B.: A forbidden subgraph characterization of line-polar bipartite graphs. Discrete Appl. Math. 158, 666–680 (2007)
17. 17.
Laroche, P.: Planar 1-in-3 satisfiability is NP-complete. In: ASMICS Workshop on Tilings, Deuxième Journées Polyominos et pavages, Ecole Normale Supérieure de Lyon (1992)Google Scholar
18. 18.
Moore, C., Robson, J.M.: Hard Tiling Problems with Simple Tiles. Discrete & Computational Geometry 26, 573–590 (2001)
19. 19.
Mulzer, W., Rote, G.: Minimun-Weight Triangulation is NP-hard. J. ACM 55, Article No. 11 (2008)Google Scholar
20. 20.
Tyshkevich, R.I., Chernyak, A.A.: Decompositions of Graphs. Cybernetics and System Analysis 21, 231–242 (1985)
21. 21.
Tyshkevich, R.I., Chernyak, A.A.: Algorithms for the canonical decomposition of a graph and recognizing polarity. Izvestia Akad. Nauk BSSR, Ser. Fiz. Mat. Navuk. 6, 16–23 (1985) (in Russian)