Recognizing Polar Planar Graphs Using New Results for Monopolarity

  • Van Bang Le
  • Ragnar Nevries
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


Polar and monopolar graphs are natural generalizations of bipartite or split graphs. A graph G = (V,E) is polar if its vertex set admits a partition V = A ∪ B such that A induces a complete multipartite and B the complement of a complete multipartite graph. If A is even a stable set then G is called monopolar.

Recognizing general polar or monopolar graphs is NP-complete and, as yet, efficient recognition is available only for very few graph classes.

This paper considers monopolar and polar graphs that are also planar. On the one hand, we show that recognizing these graphs remains NP-complete, on the other hand we identify subclasses of planar graphs on which polarity and monopolarity can be checked efficiently. The new NP-completeness results cover very restricted graph classes and are sharper than all previous known cases. On the way to the positive results, we develop new techniques for efficient recognition of subclasses of monopolar graphs. These new results extend nearly all known results for efficient monopolar recognition.


Planar Graph Chordal Graph Graph Class Free Graph Split Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8, 121–123 (1979); Erratum 14, 195 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19, 247–253 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chernyak, Z.A., Chernyak, A.A.: About recognizing (α,β) classes of polar graphs. Discrete Math. 62, 133–138 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Churchley, R., Huang, J.: Line-polar graphs: characterization and recognition (2009) (manuscript); SIAM Journal on Discrete Mathematics (accepted)Google Scholar
  6. 6.
    Churchley, R., Huang, J.: The polarity and monopolarity of claw-free graphs (2010) (manuscript) (submitted for publication)Google Scholar
  7. 7.
    Courcelle, B.: The monadic second-order logic of graphs. III. Tree-decompositions, minors and complexity issues. RAIRO Inform. Theor. Appl. 26, 257–286 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ekim, T., Heggernes, P., Meister, D.: Polar Permutation Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 218–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ekim, T., Hell, P., Stacho, J., de Werra, D.: Polarity of chordal graphs. Discrete Math. 156, 2469–2479 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ekim, T., Huang, J.: Recognizing line-polar bipartite graphs in time O(n). Discrete Appl. Math. (2010)Google Scholar
  13. 13.
    Ekim, T., Mahadev, N.V.R., de Werra, D.: Polar cographs. Discrete Appl. Math. 156, 1652–1660 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Computing 5, 691–703 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Combin. 11, #R46 (2004)Google Scholar
  16. 16.
    Huang, J., Xu, B.: A forbidden subgraph characterization of line-polar bipartite graphs. Discrete Appl. Math. 158, 666–680 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Laroche, P.: Planar 1-in-3 satisfiability is NP-complete. In: ASMICS Workshop on Tilings, Deuxième Journées Polyominos et pavages, Ecole Normale Supérieure de Lyon (1992)Google Scholar
  18. 18.
    Moore, C., Robson, J.M.: Hard Tiling Problems with Simple Tiles. Discrete & Computational Geometry 26, 573–590 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mulzer, W., Rote, G.: Minimun-Weight Triangulation is NP-hard. J. ACM 55, Article No. 11 (2008)Google Scholar
  20. 20.
    Tyshkevich, R.I., Chernyak, A.A.: Decompositions of Graphs. Cybernetics and System Analysis 21, 231–242 (1985)zbMATHGoogle Scholar
  21. 21.
    Tyshkevich, R.I., Chernyak, A.A.: Algorithms for the canonical decomposition of a graph and recognizing polarity. Izvestia Akad. Nauk BSSR, Ser. Fiz. Mat. Navuk. 6, 16–23 (1985) (in Russian)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Van Bang Le
    • 1
  • Ragnar Nevries
    • 1
  1. 1.University of RostockGermany

Personalised recommendations