Finding Contractions and Induced Minors in Chordal Graphs via Disjoint Paths

  • Rémy Belmonte
  • Petr A. Golovach
  • Pinar Heggernes
  • Pim van ’t Hof
  • Marcin Kamiński
  • Daniël Paulusma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)


The k-Disjoint Paths problem, which takes as input a graph G and k pairs of specified vertices (s i ,t i ), asks whether G contains k mutually vertex-disjoint paths P i such that P i connects s i and t i , for i = 1,…,k. We study a natural variant of this problem, where the vertices of P i must belong to a specified vertex subset U i for i = 1,…,k. In contrast to the original problem, which is polynomial-time solvable for any fixed integer k, we show that this variant is NP-complete even for k = 2. On the positive side, we prove that the problem becomes polynomial-time solvable for any fixed integer k if the input graph is chordal. We use this result to show that, for any fixed graph H, the problems H-Contractibility and H-Induced Minor can be solved in polynomial time on chordal graphs. These problems are to decide whether an input graph G contains H as a contraction or as an induced minor, respectively.


Polynomial Time Maximal Clique Input Graph Disjoint Path Tree Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge Contractions in Subclasses of Chordal Graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 528–539. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. Graph Theory and Sparse Matrix Computation 56, 1–29 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. Journal of Graph Theory 11, 71–79 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dirac, G.A.: On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B 16, 47–56 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golovach, P.A., Kamiński, M., Paulusma, D.: Contracting a Chordal Graph to a Split Graph or a Tree. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 339–350. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Containment relations in split graphs (manuscript)Google Scholar
  9. 9.
    van ’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Applied Mathematics (to appear)Google Scholar
  10. 10.
    Kammer, F., Tholey, T.: The k-Disjoint Paths Problem on Chordal Graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of Planar Graphs in Polynomial Time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 122–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kloks, T.: Treewidth, Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  13. 13.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions I: polynomially solvable and NP-complete cases. Networks 51, 178–189 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions II: two tough polynomially solvable cases. Networks 52, 32–56 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees. Discrete Mathematics 108, 343–364 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63, 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 66–579 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rémy Belmonte
    • 1
  • Petr A. Golovach
    • 2
  • Pinar Heggernes
    • 1
  • Pim van ’t Hof
    • 1
  • Marcin Kamiński
    • 3
  • Daniël Paulusma
    • 2
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.School of Engineering and Computing SciencesDurham UniversityUK
  3. 3.Département d’InformatiqueUniversité Libre de BruxellesBelgium

Personalised recommendations