Algorithm Engineering for Route Planning – An Update –

  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

Abstract

Nowadays, route planning systems belong to the most frequently used information systems. The algorithmic core problem of such systems, i.e., the fast computation of shortest paths is a classical problem that can be solved by Dijkstra’s shortest paths algorithm. However, for the huge datasets that frequently appear in route planning the algorithm is far too slow. Recently, algorithms for route planning in transportation networks have undergone a rapid development, leading to methods that are more than a million times faster than Dijkstra’s algorithm. In particular, computing shortest paths in huge networks has become a showpiece of algorithm engineering demonstrating the engineering cycle that consists of design, analysis, implementation and experimental evaluation of practicable algorithms. In this talk, we provide a condensed overview of the techniques enabling this development. In particular, new theoretical insights on when and why those techniques work so well will be discussed. The main part of the talk will focus on variants of the problem that occur in more realistic traffic scenarios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: Charikar, M. (ed.) Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 782–793. SIAM (2010)Google Scholar
  4. 4.
    Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks Using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM (2007)Google Scholar
  6. 6.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contraction Hierarchies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing Speed-Up Techniques Is Hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Bauer, R., D’Angelo, G., Delling, D., Wagner, D.: The Shortcut Problem – Complexity and Approximation. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 105–116. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. ACM Journal of Experimental Algorithmics 14(2.4), 1–29 (2009); Special Section on Selected Papers from ALENEX 2008MathSciNetMATHGoogle Scholar
  11. 11.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics 15(2.3), 1–31 (2010); Special Section devoted to WEA 2008MathSciNetMATHGoogle Scholar
  12. 12.
    Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007). Open Access Series in Informatics (OASIcs), pp. 209–225 (2007)Google Scholar
  13. 13.
    Delling, D.: Time-Dependent SHARC-Routing. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1), 60–94 (2011); Special Issue: European Symposium on Algorithms 2008MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Delling, D., Goldberg, A.V., Werneck, R.F.: Shortest Paths in Road Networks: From Practice to Theory and Back. It—Information Technology (2012) (to appear)Google Scholar
  17. 17.
    Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in Public Transportation Networks. In: 24th International Parallel and Distributed Processing Symposium (IPDPS 2010). IEEE Computer Society (2010)Google Scholar
  18. 18.
    Delling, D., Pajor, T., Wagner, D.: Accelerating Multi-Modal Route Planning by Access-Nodes. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 587–598. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Delling, D., Pajor, T., Wagner, D.: Engineering Time-Expanded Graphs for Faster Timetable Information. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 182–206. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 347–361. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective Functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and Experiments (ALENEX 2010), pp. 124–137. SIAM (2010)Google Scholar
  26. 26.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transportation Science (2011) (accepted for publication)Google Scholar
  28. 28.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74, pp. 93–139. American Mathematical Society (2009)Google Scholar
  30. 30.
    Gutman, R.J.: Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 100–111. SIAM (2004)Google Scholar
  31. 31.
    Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  32. 32.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) 9th DIMACS Implementation Challenge - Shortest Paths (November 2006)Google Scholar
  33. 33.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74, pp. 41–72. American Mathematical Society (2009)Google Scholar
  34. 34.
    Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. ACM Journal of Experimental Algorithmics 13(2.5), 1–26 (2008)Google Scholar
  35. 35.
    Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining Speed-up Techniques for Shortest-Path Computations. ACM Journal of Experimental Algorithmics 10(2.5), 1–18 (2006)MathSciNetMATHGoogle Scholar
  36. 36.
    Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Constrained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geographical Background. In: Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints (2004)Google Scholar
  38. 38.
    Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics 11(2.8), 1–29 (2006)MathSciNetMATHGoogle Scholar
  39. 39.
    Müller-Hannemann, M., Schnee, M.: Finding All Attractive Train Connections by Multi-criteria Pareto Search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.D.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Müller-Hannemann, M., Weihe, K.: Pareto Shortest Paths is Often Feasible in Practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–197. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  42. 42.
    Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* Search on Time-Dependent Road Networks. Networks (2011); Journal version of WEA 2008Google Scholar
  43. 43.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental Comparison of Shortest Path Approaches for Timetable Information. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 88–99. SIAM (2004)Google Scholar
  44. 44.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM Journal of Experimental Algorithmics 12(2.4), 1–39 (2007)MathSciNetMATHGoogle Scholar
  45. 45.
    Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  46. 46.
    Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  48. 48.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. ACM Journal of Experimental Algorithmics 5(12), 1–23 (2000)MathSciNetMATHGoogle Scholar
  49. 49.
    Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for Timetable Information in Railway Systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  50. 50.
    Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Efficient Shortest-Path Computation. ACM Journal of Experimental Algorithmics 10(1.3), 1–30 (2005)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dorothea Wagner
    • 1
  1. 1.Faculty of InformaticsKarlsruhe Institute of Technology (KIT)Germany

Personalised recommendations