Advertisement

Minimal immersions of spheres into spheres

  • Manfredo P. do Carmo
  • Nolan R. Wallach
Chapter

Abstract

In this paper we will consider isometric minimal immersions \(\psi:{\text S}^{n}_{k}\rightarrow {\text S}^{l}_{1}\subset {\text R}^{l+1}\) of the n-sphere \({\text S}^{n}_{k}\) with constant sectional curvature K into the unit sphere \({\text S}^{l}_{1}\) of the euclidean space \({\text R}^{l+1}.\)

Keywords

Riemannian Manifold Convex Body Closed Subgroup Isometric Immersion Minimal Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BOERNER, H. Representations of Groups, North-Holland Publishing Company, Amsterdam, 1963.zbMATHGoogle Scholar
  2. 2.
    CALABI, E. Minimal immersions of surfaces in euclidean spheres, J. Diff. Geom. 1 (1967), 111-125.MathSciNetzbMATHGoogle Scholar
  3. 3.
    CHERN, S-S. Minimal submanifolds in a Riemannian ma nifold, University of Kansas, Dept. of Math. Technical Report 19 (New Series), 1968.Google Scholar
  4. 4.
    CHERN, S-S., On the minimal immersions of the two-sphere in a space of constant curvature, to appear.Google Scholar
  5. 5.
    DO CARMO, M. and WALLACH, N. Representations of compact groups and minimal immersions into spheres, J. Diff. Geom., 4 (1970) , 91- 104.Google Scholar
  6. 6.
    DO CARMO, M. and WALLACH, N., Minimal immersions of spheres into spheres, Proc. Nat. Acad. Sci. USA. 63 (1969), 640- 64£.Google Scholar
  7. 7.
    HELGASON, S. Differential Geometry and Symmetric Spaces, Academic Press, 1962.Google Scholar
  8. 8.
    JACOBSON, N. Lie Algebras, Interscience Publishers, 1962.Google Scholar
  9. 9.
    MÜLLER, C. Spherical harmonics, Lecture notes in Mathematics, 17, Springer-Verlag, 1966.Google Scholar
  10. 10.
    SIMONS, J. Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    TAKAHASHI, T. Minimal immersions of riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    VILENKIN, N. I. Special functions and the theory of group representations, Amer. Math. Soc. Translations of Mathematical Monographs, vol. 22, 1968.Google Scholar
  13. 13.
    WEYL, H. The Theory of Groups and Quantum Mechanics, Dover Publications, 1950.Google Scholar
  14. 14.
    WEYL, H., Classical Groups, Princeton Mathematical Series, 1. Princeton Press, 1946.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manfredo P. do Carmo
    • 1
    • 2
    • 3
  • Nolan R. Wallach
    • 1
    • 2
    • 3
  1. 1.University Of CaliforniaBerkeleyUSA
  2. 2.l.M.P.A.Rio de JaneiroBrasil
  3. 3.Rutgers UniversityNew BrunswickUSA

Personalised recommendations