An Enhanced Differential Cache Attack on CLEFIA for Large Cache Lines

  • Chester Rebeiro
  • Rishabh Poddar
  • Amit Datta
  • Debdeep Mukhopadhyay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7107)


Reported results on cache trace attacks on CLEFIA do not work with increased cache line size. In this paper we present an enhanced cache trace attack on CLEFIA using the differential property of the s-boxes of the cipher and the diffusion properties of the linear transformations of the underlying Feistel structures. The attack requires 3 round keys, which are obtained by monitoring cache access patterns of 4 rounds of the cipher. A theoretical analysis is made on the complexity of the attack, while experimental results are presented to show the effectiveness of power and timing side-channels in deducing cache access patterns. The efficacy of the attack is theoretically justified by showing the effect of cache line size on the time and space complexity of the attack. Finally countermeasures that guarantee security against cache-attacks are compared for their efficiency on large cache lines.


Clock Cycle Block Cipher Cache Line Cryptology ePrint Archive Feistel Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acıiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache Based Remote Timing Attack on the AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J.: Cache-timing Attacks on AES. Tech. rep. (2005)Google Scholar
  5. 5.
    Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1), pp. 586–591. IEEE Computer Society (2005)Google Scholar
  6. 6.
    Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software Mitigations to Hedge AES Against Cache-based Software Side Channel Vulnerabilities. Cryptology ePrint Archive, Report 2006/052 (2006),
  7. 7.
    Canteaut, A., Lauradoux, C., Seznec, A.: Understanding Cache Attacks. Research Report RR-5881, INRIA (2006),
  8. 8.
    Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and Limits of Remote Timing Attacks. ACM Trans. Inf. Syst. Secur. 12(3) (2009)Google Scholar
  9. 9.
    Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Product Ciphers. J. Comput. Secur. 8(2,3), 141–158 (2000)CrossRefGoogle Scholar
  10. 10.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel (2002)Google Scholar
  12. 12.
    Rebeiro, C., Mukhopadhyay, D.: Cryptanalysis of CLEFIA Using Differential Methods with Cache Trace Patterns. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 89–103. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Research Center for Information Security National Institute of Advanced Industrial Science and Technology: Side-channel Attack Standard Evaluation Board Specification, Version 1.0 (2007)Google Scholar
  14. 14.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Sony Corporation: The 128-bit Blockcipher CLEFIA: Algorithm Specification (2007)Google Scholar
  16. 16.
    Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Countermeasures. Journal of Cryptology 23(2), 37–71 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES Implemented on Computers with Cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block Ciphers Implemented on Computers with Cache. In: International Symposium on Information Theory and Its Applications, pp. 803–806 (2002)Google Scholar
  19. 19.
    Zhao, X., Wang, T.: Improved Cache Trace Attack on AES and CLEFIA by Considering Cache Miss and S-box Misalignment. Cryptology ePrint Archive, Report 2010/056 (2010),
  20. 20.
    Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chester Rebeiro
    • 1
  • Rishabh Poddar
    • 1
  • Amit Datta
    • 1
  • Debdeep Mukhopadhyay
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations