The Limits of Common Coins: Further Results

  • Hemanta K. Maji
  • Manoj Prabhakaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7107)


In [8] it was shown that the coin-tossing functionality \(\mathcal{F}_{coin}\) has limited use in 2-party secure function evaluation (SFE) in the computationally unbounded (a.k.a information-theoretic) setting. Further it was shown that for \(\mathcal{F}_{coin}\) to be useful in securely realizing any one in a a large class of symmetric SFE (SSFE) functionalities, a certain computational assumption (namely the existence of a semi-honest secure OT protocol) is necessary and sufficient. In this work, we close a gap in the class of SSFE functionalities for which this result was proven in [8]: we show that \(\mathcal{F}_{coin}\) can be used to securely realize any SSFE functionality that cannot be realized in the computationally unbounded setting, if and only if there exists a semi-honest secure OT protocol.


Oblivious Transfer Unbounded Setting Corrupt Party Secure Reduction Secure Function Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beimel, A., Malkin, T., Micali, S.: The All-or-Nothing Nature of Two-Party Secure Computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Electronic Colloquium on Computational Complexity (ECCC) TR01-016 (2001); Previous version “A unified framework for analyzing security of protocols” availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001Google Scholar
  3. 3.
    Haitner, I.: Semi-Honest to Malicious Oblivious Transfer—the Black-Box Way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM (1988)Google Scholar
  5. 5.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: Proc. 32th STOC, pp. 316–324. ACM (2000)Google Scholar
  6. 6.
    Kraschewski, D., Müller-Quade, J.: Completeness Theorems with Constructive Proofs for Finite Deterministic 2-Party Functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Künzler, R., Müller-Quade, J., Raub, D.: Secure Computability of Functions in the IT Setting with Dishonest Majority and Applications to Long-Term Security. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Maji, H.K., Ouppaphan, P., Prabhakaran, M., Rosulek, M.: Exploring the limits of Common Coins Using Frontier Analysis of Protocols. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 486–503. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of Multi-Party Computation Problems: The Case of 2-Party Symmetric Secure Function Evaluation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and computational intractability assumptions. In: Yao, A.C.-C. (ed.) ICS, pp. 266–289. Tsinghua University Press (2010)Google Scholar
  11. 11.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A Zero-One Law for Cryptographic Complexity with Respect to Computational UC Security. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Prabhakaran, M., Rosulek, M.: Cryptographic Complexity of Multi-Party Computation Problems: Classifications and Separations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hemanta K. Maji
    • 1
  • Manoj Prabhakaran
    • 2
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.University of IllinoisUrbana-ChampaignUSA

Personalised recommendations