Advertisement

Abstract

Opportunistic networks are one of the most promising evolutions of the traditional Mobile Ad Hoc Networks paradigm. Communications in an opportunistic network rely on the mobility of the users: each message is handed over from node to node, making hop-by-hop decisions to select the node that is better suited for bringing the message closer to its destination. Algorithms exploiting social-awareness are emerging as one of the most efficient categories of forwarding algorithms. However we are currently lacking analytical models able to characterize the performance of social-aware forwarding in opportunistic networks. In this paper we start to fill this gap by proposing an analytical model for the expected number of hops and the expected delay experienced by messages when delivered in an opportunistic social-aware fashion. The model is then used to characterize how the expected delay experienced by messages varies with the different social structures in the network of the users.

Keywords

opportunistic networks forwarding protocols social-awareness analytical model 

References

  1. 1.
    Boldrini, C., Conti, M., Passarella, A.: Impact of social mobility on routing protocols for opportunistic networks. In: Proceedings of IEEE WoWMoM 2007, pp. 1–6 (2007)Google Scholar
  2. 2.
    Boldrini, C., Conti, M., Passarella, A.: Exploiting users’ social relations to forward data in opportunistic networks: The HiBOp solution. Pervasive and Mobile Computing 4(5), 633–657 (2008)CrossRefGoogle Scholar
  3. 3.
    Boldrini, C., Conti, M., Passarella, A.: Modelling social-aware forwarding in opportunistic networks. Tech. rep., IIT-CNR (2010), http://bruno1.iit.cnr.it/~chiara/perform10_tr.pdf
  4. 4.
    Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., Weiss, H.: Delay-tolerant networking: an approach to interplanetary internet. IEEE Communications Magazine 41(6), 128–136 (2003)CrossRefGoogle Scholar
  5. 5.
    Daly, E., Haahr, M.: Social network analysis for information flow in disconnected Delay-Tolerant MANETs. IEEE Transactions on Mobile Computing, 606–621 (2008)Google Scholar
  6. 6.
    Fall, K., Farrell, S.: DTN: an architectural retrospective. IEEE Journal on Selected Areas in Communications 26(5), 828 (2008)CrossRefGoogle Scholar
  7. 7.
    González, M., Hidalgo, C., Barabási, A.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  8. 8.
    Groenevelt, R., Nain, P., Koole, G.: The message delay in mobile ad hoc networks. Performance Evaluation 62(1-4), 210–228 (2005)CrossRefGoogle Scholar
  9. 9.
    Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking 10(4), 477–486 (2002)CrossRefGoogle Scholar
  10. 10.
    Haas, Z., Small, T.: A new networking model for biological applications of ad hoc sensor networks. IEEE/ACM Transactions on Networking 14(1), 27–40 (2006)CrossRefGoogle Scholar
  11. 11.
    Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: social-based forwarding in delay tolerant networks. In: Proceedings of the 9th ACM MobiHoc, pp. 241–250. ACM (2008)Google Scholar
  12. 12.
    Karagiannis, T., Le Boudec, J.Y., Vojnović, M.: Power law and exponential decay of inter contact times between mobile devices. In: Proceedings of the 13th ACM MobiCom 2007, pp. 183–194 (2007)Google Scholar
  13. 13.
    Lindgren, A., Doria, A., Schelén, O.: Probabilistic Routing in Intermittently Connected Networks. In: Dini, P., Lorenz, P., de Souza, J.N. (eds.) SAPIR 2004. LNCS, vol. 3126, pp. 239–254. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Ott, J.: Application protocol design considerations for a mobile internet. In: Proceedings of First ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, p. 80. ACM (2006)Google Scholar
  15. 15.
    Ross, S.: Introduction to probability models. Academic Press (2007)Google Scholar
  16. 16.
    Scott, J., Hui, P., Crowcroft, J., Diot, C.: Haggle: A networking architecture designed around mobile users. In: Proceedings of IFIP WONS (2006)Google Scholar
  17. 17.
    Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: Report from an integrated travel diary. In: 11th International Conference on Travel Behaviour Reserach, Kyoto (2006)Google Scholar
  18. 18.
    Spyropoulos, T., Psounis, K., Raghavendra, C.: Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking 16(1), 77–90 (2008)CrossRefGoogle Scholar
  19. 19.
    Spyropoulos, T., Psounis, K., Raghavendra, C.: Efficient routing in intermittently connected mobile networks: The single case. IEEE/ACM Transactions on Networking 16(1), 63–76 (2008)CrossRefGoogle Scholar
  20. 20.
    Spyropoulos, T., Turletti, T., Obraczka, K.: Routing in Delay-Tolerant Networks Comprising Heterogeneous Node Populations. IEEE Transactions on Mobile Computing, 1132–1147 (2009)Google Scholar
  21. 21.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Tech. Rep. CS-2000-06, Duke University (2000)Google Scholar
  22. 22.
    Zhang, X., Neglia, G., Kurose, J., Towsley, D.: Performance modeling of epidemic routing. Computer Networks 51(10), 2867–2891 (2007)CrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Chiara Boldrini
    • 1
  • Marco Conti
    • 1
  • Andrea Passarella
    • 1
  1. 1.IIT-CNRPisaItaly

Personalised recommendations