Nano-Bio Integration

  • Daniela Dragoman
  • Mircea Dragoman
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The aim of nanobiotechnology is the integration of nanodevices with biological molecules, such that both components maintain their functionalities. This chapter provides examples of such hybrid materials and devices.

Keywords

Gate Voltage Microbial Fuel Cell Lower Critical Solution Temperature Biofuel Cell Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomaterialia 5:607–612CrossRefGoogle Scholar
  2. Angelani L, Di Leonardo R, Ruocco G (2009) Self-starting micromotors in a bacterial bath. Phys Rev Lett 102:048104ADSCrossRefGoogle Scholar
  3. Bradley K, Davis A, Gabriel J-CP, Grüner G (2005) Integration of cell membranes and nanotube transistors. Nano Lett 5:841–845ADSCrossRefGoogle Scholar
  4. Calabrese Barton S, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886CrossRefGoogle Scholar
  5. Cha M, Jung S, Cha M-H, Kim G, Ihm J, Lee J (2000) Reversible metal–semiconductor transition of ssDNA-decorated single-walled carbon nanotubes. Nano Lett 9:1345–1349ADSCrossRefGoogle Scholar
  6. Clever GH, Kaul C, Carell T (2007) DNA-metal base pairs. Angew Chem Int Ed 46:6226–6236CrossRefGoogle Scholar
  7. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319CrossRefGoogle Scholar
  8. Das R, et al (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4:1079–1083ADSCrossRefGoogle Scholar
  9. Di Leonardo R, et al (2010) Bacterial ratchet motors. Proc Natl Acad Sci 107:9541–9545ADSCrossRefGoogle Scholar
  10. Dinu CZ, Bale SS, Zhu G, Dordick JS (2009) Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small 5:310–315CrossRefGoogle Scholar
  11. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865ADSCrossRefGoogle Scholar
  12. Dudia A, Koçer A, Subramaniam V, Kanger JS (2008) Biofunctionalized lipid-polymer hybrid nanocontainers with controlled permeability. Nano Lett 8:1105–1110ADSCrossRefGoogle Scholar
  13. Gao B, Sarveswaran K, Bernstein GH, Lieberman M (2010) Guided deposition of individual DNA nanostructures on silicon substrates. Langmuir 26:12680–12683CrossRefGoogle Scholar
  14. Hänggi P, Marchesoni F (2009) Artificial Brownian motors: controlling transport on the nanoscale. Rev Mod Phys 81:387–442ADSCrossRefGoogle Scholar
  15. Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216CrossRefGoogle Scholar
  16. Kotov NA, et al (2009) Nanomaterials for neural interfaces. Adv Mater 21:3970–4004CrossRefGoogle Scholar
  17. Lee JY, Shin HY, Kang SW, Park C, Kim SW (2010) Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell. J Power Sources 195:750–755CrossRefGoogle Scholar
  18. Li Y, Kaneko T, Hatakeyama R (2010a) Tailoring the electronic structure of double-walled carbon nanotubes by encapsulating single-stranded DNA. Small 6:729–732CrossRefGoogle Scholar
  19. Li YF, Kaneko T, Hatakeyama R (2010b) Formation of quantum dots in single stranded DNA-wrapped single-walled carbon nanotubes. Appl Phys Lett 96:023104ADSCrossRefGoogle Scholar
  20. Maglia G, heron AJ, Hwang WL, Holden MA, Mikhailova E, Li Q, Cheley S, Bayley H (2009) Droplet networks with incorporated protein diodes show collective properties. Nat Nanotechnol 4:437–440Google Scholar
  21. Maruccio G, et al (2003) Field effect transistor based on a modified DNA base. Nano Lett 3:479–483ADSCrossRefGoogle Scholar
  22. Mentovich ED, Belgorodsky B, Kalifa I, Cohen H, Richter S, (2009) Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors. Nano Lett 9:1296–1300ADSCrossRefGoogle Scholar
  23. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476ADSCrossRefGoogle Scholar
  24. Mori N, Kuribayashi K, Takeuchi S (2010) Artificial flagellates: analysis of advancing motions of biflagellate micro-objects. Appl Phys Lett 96:083701ADSCrossRefGoogle Scholar
  25. Moth-Poulsen K, Bjørnholm T (2000) Molecular electronics with single molecules in solid-state devices. Nat Nanotechnol 4:551–556ADSCrossRefGoogle Scholar
  26. Ner Y, Navarathne D, Niedzwiedzki DM, Grote JG, Dobrynin AV, Frank HA, Sotzing GA (2009) Stabilization of fluorophore in DNA thin films. Appl Phys Lett 95:263701ADSCrossRefGoogle Scholar
  27. Nokhrin S, Baru M, Lee JS (2007) A field-effect transistor from M-DNA. Nanotechnology 18:095205Google Scholar
  28. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21:3159–3164CrossRefGoogle Scholar
  29. Rama Rao GV, Balamurugan S, Meyer DE, Chilkoti A, López GP (2002) Hybrid bioinorganic smart membranes that incorporate protein-based molecular switches. Langmuir 18:1819–1824CrossRefGoogle Scholar
  30. Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Dynamic electrical switching of DNA layers on a metal surface. Nano Lett 4:2441–2445ADSCrossRefGoogle Scholar
  31. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336CrossRefGoogle Scholar
  32. Sasaki TK, Ikegami A, Aoki N, Ochiai Y (2006) DNA-FET using carbon nanotube electrodes. J Phys Conf Ser 38:41–44 (2006)ADSCrossRefGoogle Scholar
  33. Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253ADSCrossRefGoogle Scholar
  34. Verma P, Melosh NA (2010) Gigaohm resistance membrane seals with stealth probe electrodes. Appl Phys Lett 97:033704ADSCrossRefGoogle Scholar
  35. Wen L, Hou X, Tian, J. Zhai, Jiang L (2010) Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv Funct Mater 20:2636–2642CrossRefGoogle Scholar
  36. Yumusak C, Singh ThB, Sariciftci NS, Grote JG (2009) Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. Appl Phys Lett 95:263304ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations