Advertisement

Bioinspired Devices

  • Daniela Dragoman
  • Mircea Dragoman
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter summarizes materials and devices that were designed using nature as inspiration. These materials can incorporate multiple functionalities, while the devices improve standard human designs. In addition, bioinspired technological processes are presented, which take place in mild environmental conditions, and complex structures that mimic the functionality of organs are discussed as a first step toward a better understanding of human and animal bodies.

Keywords

Beta Cell Superhydrophobic Surface Static Contact Angle Artificial Muscle Dominant Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1,575–1,578Google Scholar
  2. Baller MK, Lang HP, Fritz J, Gerber Ch, Gimzewski JK, Drechsler U, Rothuizen H, Despont M, Vettiger P, Battiston FM, Ramseyer JP, Fornaro P, Meyer E, Güntherodt H-J (2000) A cantilever array-based artificial nose. Ultramiscroscopy 82:1–9CrossRefGoogle Scholar
  3. Bauer CA, Robinson DB, Simmons BA (2007) Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. Small 3:58–62ADSCrossRefGoogle Scholar
  4. Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319:1069–1073ADSCrossRefGoogle Scholar
  5. Chiadini F, Fiumara V, Scaglione A, Lakhtakia A (2010) Simulation and analysis of prismatic bioinspired compound lenses for solar cells. Bioinspir Biomim 5:026002ADSCrossRefGoogle Scholar
  6. Crookes WJ, Ding L-L, Huang QL, Kimbell JR, Horwitz J, McFall-Ngai MJ (2004) Reflectins: the unusual proteins of squid reflective tissues. Science 303:235–238ADSCrossRefGoogle Scholar
  7. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554ADSCrossRefGoogle Scholar
  8. Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, Park J-G, Prum RO, Mochrie SGJ, O’Hern CS, Cao H, Dufresne ER (2010) Biomimetic isotropic nanostructures for structural coloration. Adv Mater 22:2,939–2,944Google Scholar
  9. Fratzl P and Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448.ADSCrossRefGoogle Scholar
  10. Gaillot DP, Deparis O, Welch V, Wagner BK, Vigneron JP, Summers CJ (2008) Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. Phys Rev E 78:031922ADSCrossRefGoogle Scholar
  11. Georgiou P, Toumazou C (2007) A silicon pancreatic beta cell for diabetes. IEEE Trans Biomed Circuits Syst 1:39–49CrossRefGoogle Scholar
  12. Graz I, Krause M, Bauer-Gogonea S, Bauer S, Lacour SP, Ploss B, Zirkl M, Stadlober B, Wagner S (2009) Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J Appl Phys 106:034503ADSCrossRefGoogle Scholar
  13. Haick H, Hakim M, Patrascu M, Levenberg C, Shehada N, Nakhoul F, Abassi Z (2009) Sniffing chronic renal failure in rat model by an array of random networks of single-walled carbon nanotubes. ACS Nano 3:1,258–1,266Google Scholar
  14. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1,662–1,668Google Scholar
  15. Jeong HE, Lee J-K, Kwak MK, Moon SH, Suh KY (2010) Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion. Appl Phys Lett 96:043704ADSCrossRefGoogle Scholar
  16. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutosky MR (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24:65–74CrossRefGoogle Scholar
  17. Ko HC, Stoykovich MP, Song J, Malyarchuk V, Choi WM, Yu C-J, Geddes JB III, Xiao J, Wang S, Huang Y, Rogers JA (2008) A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454:748–753ADSCrossRefGoogle Scholar
  18. Kolle M, Salgard-Cunha PM, Scherer MRJ, Huang F, Vukusic P, Mahajan S, Baumberg JJ, Steiner U (2010) Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat Nanotechnol 5:511–515ADSCrossRefGoogle Scholar
  19. Kustandi TS, Low HY, Teng JH, Rodriguez I, Yin R (2009) Mimicking domino-like photonic nanostructures on butterfly wings. Small 5:574–578CrossRefGoogle Scholar
  20. Jin Y, Tai H, Hiltner A, Baer E, Shirk JS (2007) New class of bioinspired lenses with a gradient refractive index. J Appl Polymer Sci 103:1,834–1,841Google Scholar
  21. Jun I-K, Hess H (2010) A biomimetic, self-pumping membrane. Adv Mater 22:4,823–4,825Google Scholar
  22. Lai Q, Zhang L, Li Z, Stickle WF, Williams RS, Chen Y (2010) Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv Mater 22:2,448–2,453Google Scholar
  23. Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310:1,148–1,150Google Scholar
  24. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341ADSCrossRefGoogle Scholar
  25. Leng B, Chen X, Shao Z, Ming W (2008) Biomimetic synthesis of silica with chitosan-mediated morphology. Small 4:755–758CrossRefGoogle Scholar
  26. Li L, Yi AY (2010) Development of a 3D artificial compound eye. Opt Exp 18:18,125–18,137Google Scholar
  27. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9:2,763–2,768Google Scholar
  28. Liu K, Zhang M, Zhai J, Wang J, Jiang L (2008) Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance. Appl Phys Lett 92:183103ADSCrossRefGoogle Scholar
  29. Liu M, Zheng Y, Zhai J, Jiang L (2010) Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc Chem Res 43:368–377CrossRefGoogle Scholar
  30. Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2,947–2,958Google Scholar
  31. McConney ME, Anderson KD, Brott LL, Naik RR, Tsukruk VV (2009) Bioinspired material approaches to sensing. Adv Funct Mater 19:2,527–2,544Google Scholar
  32. Min W-L, Betancourt AP, Jiang P, Jiang B (2008) Bioinspired broadband antireflection coatings on GaSb. Appl Phys Lett 92:141109ADSCrossRefGoogle Scholar
  33. Mohammed JS, Murphy WL (2009) Bioinspired design of dynamic materials. Adv Mater 21:2,361–2,374Google Scholar
  34. Murphy MP, Aksak B, Sitti M (2009) Gecko-inspired directional and controllable adhesion. Small 5:170–175CrossRefGoogle Scholar
  35. Noh H, Yang J-K, Liew SF, Rooks MJ, Solomon GS, Cao H (2011) Control of lasing in biomimetic structures with short-range order. Phys Rev Lett 106:183901ADSCrossRefGoogle Scholar
  36. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  37. Pejoux C, de la Rica R, Matsui H (2010) Biomimetic crystallization of sulfide semiconductor nanoparticles in aqueous solution. Small 6:999–1,002Google Scholar
  38. Pulsifer DP, Lakhtakia A, Martín-Palma RJ, Pantano CG (2010) Mass fabrication technique for polymeric replicas of arrays of insect corneas. Bioinspir Biomim. 5:036001.ADSCrossRefGoogle Scholar
  39. Que L, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340ADSCrossRefGoogle Scholar
  40. Sanles-Sobrido M, Salgueiriño-Maceira V, Correa-Duarte MA, Liz-Marzán LM (2008) Magnificent sea-anemone-like magnetic silica capsules reinforced with carbon nanotubes. Small 4:583–586CrossRefGoogle Scholar
  41. Song F, Meng S, Xu X, Shao Y (2010) Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins. Phys Rev Lett 104:125502ADSCrossRefGoogle Scholar
  42. Sun C-H, Gonzalez A, Linn NC, Jiang P, Jiang B (2008) Templated biomimetic multifunctional coatings. Appl Phys Lett 92:051107ADSCrossRefGoogle Scholar
  43. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3,182–3,188Google Scholar
  44. Sysoev VV et al (2010) Single-belt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4:4,487–4,494Google Scholar
  45. Vigneron JP, Rassart M, Vandenbem C, Lousse V, Deparis O, Biró LP, Dedouaire D, Cornet A, Defrance P (2006) Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. Phys Rev E 73:041905ADSCrossRefGoogle Scholar
  46. Wang J, Sato H, Xu C, Taya M (2009) Bioinspired design of tactile sensors based on Flemion. J Appl Phys 105:083515ADSCrossRefGoogle Scholar
  47. Wu S et al (2008) A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals. Nano Lett 8:3,803–3,808Google Scholar
  48. Wu D, Chen Q-D, Yao J, Guan Y-C, Wang J-N, Niu L-G, Fang H-H, Sun H-B (2010) A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Appl Phys Lett 96:053704ADSCrossRefGoogle Scholar
  49. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial meterials. Adv Mater 20:2,842–2,858Google Scholar
  50. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5:1,287–1,291Google Scholar
  51. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9:3,663–3,667Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations