Biomolecular Architecture for Nanotechnology

  • Daniela Dragoman
  • Mircea Dragoman
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter reviews the design principles of biomolecular architecture with applications in nanotechnology and presents examples of zero-, one-, two-, and three-dimensional patterns of inorganic materials assembled on biological scaffolds. The use of nanoscale inorganic scaffolds for biomolecules is briefly discussed. Electronic nanoscale components separated by nanosized distances, which eventually lead to faster computation, require new technologies. One possible solution to the new generation of nanotechnologies involves the use of biological molecules, and in particular DNA, as scaffolds for electronic circuits. The advantages of DNA scaffolds are the self-assembly process and the specificity of A–T and G–C hydrogen-bonding interactions, as well as our present ability to synthesize and amplify any desired DNA sequence. In addition, the nanostructures constructed from DNA scaffolds are physicochemically stable, which means that they can be stored and processed under environmental conditions that do not need to be especially restrictive to avoid decomposition. The processing of DNA material can be performed with atomic precision by highly specific enzymes. Because of the relevance of DNA architecture to nanotechnology, many reviews exist on this subject (see, e.g., Seeman 1998; Feldkamp and Niemeyer 2006; Jaeger and Chworos 2006; Lin et al. 2009). We only focus here on specific examples of DNA-based fabrication of inorganic nanoparticle arrays or devices with applications in nanotechnology [see also (Li et al. 2009) for a recent review]. In most cases, nanotechnology-related scaffolding relies on the possibility of attaching chemical groups at certain positions, on which properly functionalized inorganic molecules bind in a subsequent process. DNA-based nanotechnology is a bottom-up self-assembly approach that follows a different strategy compared to inorganic self-assembly: nonequilibrium processes direct the assembly in biological structures, whereas equilibrium-regulated processes are commonly employed in artificial inorganic structures.

Keywords

Gold Nanoparticles Imino Proton Silicon Master Biological Scaffold Mesoporous Silica Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Berry V, Rangaswamy S, Saraf RF (2004) Highly selective, electrically conductive monolayer of nanoparticles on live bacteria. Nano Lett 4:939–942ADSCrossRefGoogle Scholar
  2. Bidault S, García de Abajo GJ, Polman A (2008) Plasmon-based nanolenses assembled on a well-defined DNA template. J Am Chem Soc 130:2750–2751CrossRefGoogle Scholar
  3. Bui H, Onodera C, Kidwell C, Tan YP, Graugnard E, Kuang W, Lee J, Knowlton WB, Yurke B, Hughes WL (2010) Programmable periodicity of quantum dot arrays with DNA origami nanotubes. Nano Lett 10:3367–3372ADSCrossRefGoogle Scholar
  4. Burley GA, Gierlich J, Mofid MR, Nir H, Tal S, Eichen Y, Carell T (2006) Directed DNA metallization. J Am Chem Soc 128:1398–1399CrossRefGoogle Scholar
  5. Carny O, Shalev DE, Gazit E (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett 6:1594–1597ADSCrossRefGoogle Scholar
  6. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4:2233–2236ADSCrossRefGoogle Scholar
  7. Dehlinger DA, Sullivan BD, Esener S, Heller MJ(2007) Electric-field-directed assembly of biomolecular-derivatized nanoparticles into higher-order structures. Small 3:1237–1244CrossRefGoogle Scholar
  8. Deng Z, Mao C (2004) Molecular lithography with DNA nanostructures. Angew Chem Int Ed 43:4068–4070CrossRefGoogle Scholar
  9. Feldkamp U, Niemeyer CM (2006) Rational design of DNA nanoarchitectures. Angew Chem Int Ed 45:1856–1876CrossRefGoogle Scholar
  10. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, Haynie DT (2006) DNA nanowire fabrication. Nanotechnology 17:R14–R25ADSCrossRefGoogle Scholar
  11. Han TH, Moon H-S, Hwang JO, Seok SI, Im SH, Kim SO (2010) Peptide-templating dye-sensitized solar cells. Nanotechnology 21:185601Google Scholar
  12. Hinds S, Taft BJ, Levina L, Sukhovatkin V, Dooley CJ, Roy MD, MacNeil DD, Sargent EH, Kelley SO (2006) Nucleotide-directed growth of semiconductor nanocrystals. J Am Chem Soc 128:64–65CrossRefGoogle Scholar
  13. Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4:507–511ADSCrossRefGoogle Scholar
  14. Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543CrossRefGoogle Scholar
  15. Keren K, Berman RS, Braun E (2004) Patterned DNA metallization by sequence-specific localization of a reducing agent. Nano Lett 4:323–326ADSCrossRefGoogle Scholar
  16. Keren K, Krueger M, Gilad R, Ben-Yoseph G, Sivan U, Braun E (2002) Sequence-specific molecular lithography on single DNA molecules. Science 297:72–75ADSCrossRefGoogle Scholar
  17. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382ADSCrossRefGoogle Scholar
  18. Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR, Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 4:557–561ADSCrossRefGoogle Scholar
  19. Kuzuya A, Komiyama M (2010) DNA origami: fold, stick and beyond. Nanoscale 2:310–322ADSCrossRefGoogle Scholar
  20. Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4:2343–2347ADSCrossRefGoogle Scholar
  21. Lee YJ, Yi H, Kim W-J, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM (2009) Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324:1051–1055ADSGoogle Scholar
  22. Li H, Carter JD, LaBean ThH (2009) Nanofabrication by DNA self-assembly. Mater Today 12:24–32CrossRefGoogle Scholar
  23. Liang H, Angelini TE, Ho J, Braun PV, Wong GCL (2003) Molecular imprinting of biomineralized CdS nanostructures: crystallographic control using self-assembled DNA-membrane templates. J Am Chem Soc 125:11786–11787CrossRefGoogle Scholar
  24. Lin C, Liu Y, Yan H (2009) Designer DNA nanoarchitectures. Biochemistry 48:1663–1674CrossRefGoogle Scholar
  25. Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460:855–862ADSCrossRefGoogle Scholar
  26. Ma N, Dooley CJ, Kelley SO (2006) RNA-templated semiconductor nanocrystals. J Am Chem Soc 128:12598–12599CrossRefGoogle Scholar
  27. Mao C, Solis DJ, Reiss BD, Kottman ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217ADSCrossRefGoogle Scholar
  28. Maune HT, Han S, Barish RD, Bockrath M, Goddard III WA, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66ADSCrossRefGoogle Scholar
  29. Ng BC, Yu M, Gopal A, Rome LH, Monbouquette HG, Tolbert SH (2008) Encapsulation of semiconducting polymers in vault protein cages. Nano Lett 8:3503–3509ADSCrossRefGoogle Scholar
  30. Noh H, Hung AM, Choi C, Lee JH, Kim J-Y, Jin S, Cha JN (2009) 50 nm DNA nanoarrays generated from uniform oligonucleotide films. ACS Nano 3:2376–2382CrossRefGoogle Scholar
  31. Noh H, Choi C, Hung AM, Jin S, Cha JN (2010) Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement. ACS Nano 28:5076–5080CrossRefGoogle Scholar
  32. Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kihl RA (2005) Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett 5:2399–2402ADSCrossRefGoogle Scholar
  33. Prasad T, Turner M, Falkner J, Mittleman D, Johnson J, Lin T, Colvin V (2006) Nanostructured virus crystals for X-ray optics. IEEE Trans Nanotechnol 5, 93–96ADSCrossRefGoogle Scholar
  34. Puchner EM, Kufer SK, Strackharn M, Stahl SW, Gaub HE (2008) Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. Nano Lett 8:3692–3695ADSCrossRefGoogle Scholar
  35. Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191ADSCrossRefGoogle Scholar
  36. Rakitin A, Aich P, Papadopoulos C, Kobzar Yu, Vedeneev AS, Lee JS, Xu JM (2001) Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys Rev Lett 86:3670–3673ADSCrossRefGoogle Scholar
  37. Sabella S, Brunetti V, Vecchio G, Della Torre A, Rinaldi R, Cingolani R, Pompa PP (2009) Micro/nanoscale parallel patterning of functional biomolecules, organic fluorophores and colloidal nanocrystals. Nanoscale Res Lett 4:1222–1229ADSCrossRefGoogle Scholar
  38. Sadasivan S, Dujardin E, Li M, Johnson CJ, Mann S (2005) DNA-driven assembly of mesoporous silica/gold satellite nanostructures. Small 1:103–106CrossRefGoogle Scholar
  39. Seeman NC (1998) Nucleic acid nanostructures and topology. Angew Chem Int Ed 37:3220–3238CrossRefGoogle Scholar
  40. Sharma J, Chhabra R, Liu Y, Ke Y, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45:730–735CrossRefGoogle Scholar
  41. Szuchmacher Blum A, Soto CM, Wilson CD, Cole JD, Kim M, Gnade B, Chatterji A, Ochoa WF, Lin T, Johnson JE, Ratna BR (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4:867–870ADSCrossRefGoogle Scholar
  42. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276ADSCrossRefGoogle Scholar
  43. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114CrossRefGoogle Scholar
  44. Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120CrossRefGoogle Scholar
  45. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884ADSCrossRefGoogle Scholar
  46. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6:562–567ADSCrossRefGoogle Scholar
  47. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6:1502–1504ADSCrossRefGoogle Scholar
  48. Zhou JC, Gao Y, Martinez-Molares AA, Jing X, Yan D, Lau J, Hamasaki T, Ozkan CS, Ozkan M, Hu E, Dunn B (2008) Microtubule-based gold nanowires and nanowire arrays. Small 4:1507–1515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations