Imaging and Manipulation of Biomolecules

  • Daniela Dragoman
  • Mircea Dragoman
Part of the NanoScience and Technology book series (NANO)


In this chapter, we present the main methods able to image and manipulate biomolecules, with the purpose of getting more information about their behavior. The main characterization tools related to nanotechnologies, such as the atomic force microscope and the scanning tunneling microscopy, will be presented in relation to biomolecule imaging and manipulation. Other applications will be presented as well. The imaging of biomolecules and other biological entities is dominated by optical microscopy, fluorescence microscopy, confocal microscopy, and labeling with organic fluorophores, which are nanoparticles that emit light for in vivo analysis or in vitro detection. However, this subject is beyond the aims of this book. The reader interested in these subjects is advised to read the excellent review of Roncali et al. (2010). This chapter deals mainly with imaging methods directly linked to nanotechnologies


Atomic Force Microscope Scan Tunneling Microscopy Tunneling Current Optical Tweezer Dielectric Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamcik J, Jung J-M, Flakowski J, de los Rios P, Dietler G, Mezzenga R (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscope. Nat Nanotechnol 5:423–427Google Scholar
  2. Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin, pp 330–331Google Scholar
  3. Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82:1537–1553CrossRefGoogle Scholar
  4. Carmon G, Feingold M (2011) Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt Lett 36:40–42ADSCrossRefGoogle Scholar
  5. Chéry CC, Moens L, Cornelis R, Vanhaecke F (2006) Capabilities and limitations of gel electrophoresis for elemental speciation: a laboratory’s experience. Pure Appl Chem 78:91–103CrossRefGoogle Scholar
  6. Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83:2170–2179CrossRefGoogle Scholar
  7. Dragoman D, Dragoman M (2009) Real-time detection of deoxyribonucleic acid bases via their negative differential conductance signatures. Phys Rev E 80:022901ADSCrossRefGoogle Scholar
  8. Frederix PLTM, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96:329–338CrossRefGoogle Scholar
  9. Hansma PK, Tersoff J (1987) Scanning tunneling microscope. J Appl Phys 61:R1–R23ADSCrossRefGoogle Scholar
  10. Hawes C, Osterrieder A, Sparkes IA, Ketelaar T (2010) Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr Opin Plant Biol 13:731–735CrossRefGoogle Scholar
  11. He J, Lin L, Zhang P, Lindsay S (2007) Identification of DNA basepairing via tunneling-current decay. Nano Lett 7:3854–3858ADSCrossRefGoogle Scholar
  12. Hilal N, Bowen WR, Alkhatib L, Ogunbiyi O (2006) A review of atomic force microscopy applied to cell interactions with membranes. Chem Eng Res Des 84(A4):282–292Google Scholar
  13. Hölzel R (2009) Dielectric and dielectrophoretic properties of DNA. IET Nanobiotechnol 3:28–45.CrossRefGoogle Scholar
  14. Hsiung L-C, Yang C-H, Chiu C-L, Chen C-L, Wang Y, Lee H, Cheng J-Y, Ho M-C, Wo AM (2008) A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens Bioelectron 24:869–875.CrossRefGoogle Scholar
  15. Kang Y, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54:1715–1720CrossRefGoogle Scholar
  16. Kawakatsu H, Saya D, Kato A, Fukushima K, Tosiyoshi H, Fujita H (2002) Millions of cantilevers for atomic force microscopy. Rev Sci Instrum 73:1188–1192ADSCrossRefGoogle Scholar
  17. Kumar S, Yoon S-H, Kim G-H (2009) Bridging the nanogap electrodes with gold nanoparticles using dielectrophoresis techniques. Curr Appl Phys 9:101–103ADSCrossRefGoogle Scholar
  18. Le Grimellec C, Milhiet PE, Perez E, Pincet F, Aimé J-P, Emiliani V, Thoumine O, Lionnet T, Croquette V, Allemand J-F, Bensimon D (2010) Nanoforce and imaging. In: Boisseau P, Houdy P, Lahmani M (eds) Nanoscience. Nanobiotechnology and nanobiology. Springer, BerlinGoogle Scholar
  19. Lyubchenko Y, Shyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54:274283CrossRefGoogle Scholar
  20. Mou JX et al (1996) High resolution surface structure of E-coli GroES oligomer by atomic force microscopy. FEBS Lett 381:161–164CrossRefGoogle Scholar
  21. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2785–2809ADSCrossRefGoogle Scholar
  22. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811CrossRefGoogle Scholar
  23. Rajagopalan J, Saif MTA (2011) MEMS sensors and microsystems for cell mechanobiology. J Micromech Microeng 21:054002.CrossRefGoogle Scholar
  24. Roncali E, Tavitian B, Texier Ie, Peltié P, Perraut F, Boutet J, Cognet L, Lounis B, Marguet D, Thoumine O, Tramier M (2010) Optical tools. In: Boisseau P, Houdy P, Lahmani M (eds) Nanoscience. Nanobiotechnology and nanobiology. Springer, BerlinGoogle Scholar
  25. Sarid D (1994) Scanning force microscopy with applications to electronic, magnetic and atomic forces. Oxford University Press, New York.Google Scholar
  26. Shapir E, Chen H, Calzoni A, Cavazzoni C, Ryndyk DA, Cuniberti G, Kotlyar A, di Felice R (2008) Electronic structure of single DNA molecules resolved by transverse scanning tunneling spectroscopy. Nat Mater 7:68–74ADSCrossRefGoogle Scholar
  27. Stoltz M, Gottardd R, Raiter R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Düggelin M, Bascong W, Daniels AU, Friederich MF, Aszodi A, Aebi U (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscope. Nat Nanotechnol 4:186–192ADSCrossRefGoogle Scholar
  28. Tanaka H, Kawai T (2009) Partial sequencing of single DNA molecule with a scanning tunneling microscope. Nat Nanotechnol 4:518–522ADSCrossRefGoogle Scholar
  29. Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytönen VP, Ihalainen T, Törmä P (2006) Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett 6:1339–1343ADSCrossRefGoogle Scholar
  30. Wang MD, Yin H, Landick R, Gelles J, Block SM, Stretching DNA (1997) with optical tweezers. Biophys J 72:1335–1346CrossRefGoogle Scholar
  31. Wilson NR, Macpherson J (2009) Carbon nanotube tips for atomic force microscopy. Nat Nanotechnol 4:483–491ADSCrossRefGoogle Scholar
  32. Xu M, Enders RG, Arakawa Y (2007) Electronic signature of DNA bases. Small 3:1539–1543CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations