Sensing of Biomolecules

  • Daniela Dragoman
  • Mircea Dragoman
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter is dedicated to the label-free detection of various biomolecules using nanodevices such as field-effect transistors having channels with nanometric dimensions made from various nanomaterials like nanowires, nanotubes, or graphene; cantilevers, optical waveguides, nanopores, and other nanosized devices will be described for sensing of biomolecules.

Keywords

Localize Surface Plasmon Resonance Surface Plasmon Polaritons Electronic Nose Casimir Force Gate Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbas A., Linman MJ, Cheng Q (2011) New trends in instrumentation design for surface plasmon resonance-based sensors. Biosensors Bioelectronics 26:1815–1824CrossRefGoogle Scholar
  2. Akeson M,Branton D, Kasianowiccz JJ, Brandin E, Deamer DW (1999) Microsecond time scale discrimination among polycytidylic acid, polyadenylic acid and polyuridylic acid as homopolymers or as segments with single RNA molecules. Biophys J 77:3227CrossRefGoogle Scholar
  3. Arshak K, Moore E, Lyons GM, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sensor Rev 24:181–198CrossRefGoogle Scholar
  4. Atashbar MZ, Bejcek BE, Singamaneni S (2006) Carbon nanotube network-based biomolecule detection. IEEE Sensors J 6:524–528CrossRefGoogle Scholar
  5. Barnes WL (2006) Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Phys A 8:S87–S93Google Scholar
  6. Boisen A, Dohn S, Keller SS, Schmid S, Tenje M (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74:036101Google Scholar
  7. Burg TP, Godin M, Knudsen SM, Schen W, Carlson G, Foster JS, Babcock K, Manalis SC (2007) Weighing of single cell and single nanoparticles in fluid. Nature 446:1066–1069ADSCrossRefGoogle Scholar
  8. Capobianco JA, Shih W-H, Leu J-H, Lo GC-F, Shih WY (2010) Label free detection of the white spot syndrome virus using lead magnesium niobate-lead titanate piezoelectric microcantilever sensors. Biosensors Bioelectronics 26:964–969CrossRefGoogle Scholar
  9. Chand A, Viani MB, Scaffer TE, Hansma PK (2000) Microfabricated small metal cantilever with silicon tip for atomic force microscopy. J Microelectromech Syst 9:112–116CrossRefGoogle Scholar
  10. Chen Y,Wang X, Hong MK, Rosenberg CL, Reinhard BM, Erramilli S, Mohanty P (2010) Nanoelectronic detection of breast cancer biomarker. Appl Phys Lett 97:233702ADSCrossRefGoogle Scholar
  11. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistor. Nano Lett 3:149–152ADSCrossRefGoogle Scholar
  12. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215ADSCrossRefGoogle Scholar
  13. Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13:120–131ADSCrossRefGoogle Scholar
  14. Dragoman M, Dragoman D (2008) Plasmonics: applications to nanoscale terahertz and optical devices. Progr Quantum Electronics 32:1–48ADSCrossRefGoogle Scholar
  15. Dragoman M, Dragoman D (2009) Nanoelectronics. Principles and devices, Artech House, BostonGoogle Scholar
  16. Englebienne P, van Hoonacker A, Verhas M (2003) Surface plasmon resonances: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273CrossRefGoogle Scholar
  17. Eom K, Park HS, Yoon DS, Kwon T (2011) Phys Rep 503:115–163ADSCrossRefGoogle Scholar
  18. Fan X, White IM, Shopova SI, Zhu H, Sutter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim 620:8–26CrossRefGoogle Scholar
  19. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–194ADSCrossRefGoogle Scholar
  20. Gracheva ME, Aksimentiev A, Leburton J-P (2006) Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17:3160–3165ADSCrossRefGoogle Scholar
  21. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335CrossRefGoogle Scholar
  22. Gupta A, Akin D, Bashir R (2004) Single virus particles mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84:1976–1978ADSCrossRefGoogle Scholar
  23. Hansen KH, Ji H-F, Wu G, Datr R, Cote R, Mujumdar A, Thundat T (2001) Anal Chem 73:1576–1571Google Scholar
  24. Harris JGE, et al. (1996) Fabrication and characterization of 100 nm-thick GaAs cantilevers. Rev Sci Instrum 67:13591–3593ADSCrossRefGoogle Scholar
  25. Hamamoto K, Micheletto R, Oyama M, Umar AA, Kawai S, Y. Hutter E., Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706Google Scholar
  26. Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2:1544–1559ADSCrossRefGoogle Scholar
  27. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Matter 16:1685–1706CrossRefGoogle Scholar
  28. Ilic B, Craihead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004a) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95:3694–3703ADSCrossRefGoogle Scholar
  29. Ilic B, Yang Y, Craighead HG (2004b) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85:2604–2606ADSCrossRefGoogle Scholar
  30. Ivanov AP, Instuli E, McGilvery C, Baldwin G, McComb DW, Albrecht T, Edel JB (2011) DNA tunneling detector embedded in a nanopore. Nano Lett 11:279–285ADSCrossRefGoogle Scholar
  31. Iwasaki Y, Tobita T, Horiuchi, Seyama M (2006) Chemical sensors and surface plasmon resonance biosensors. NTT Tech Rev 4:21–29Google Scholar
  32. Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW, Therrien RJ, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2006) Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 89:122102ADSCrossRefGoogle Scholar
  33. Kang DS, Wang HT, Ren F, Pearton SJ (2008) Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J Appl Phys 104:031101ADSCrossRefGoogle Scholar
  34. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical resistor. Science 287:622–625ADSCrossRefGoogle Scholar
  35. Kowalczyk SW, Hall AR, Dekker C (2010) Detection of local protein structures along DNA using solid-state nanopores, Nano Lett 10:324–328ADSCrossRefGoogle Scholar
  36. Kuzmych O, Allen BL, Star A (2007) Carbon nanotube sensors for exhaled breath components. Nanotechnology 18:37502CrossRefGoogle Scholar
  37. Lamoureaux SK (2005) Casimir force: background, experiments, and applications. Rep Prog Phys 68:201–236ADSCrossRefGoogle Scholar
  38. Lee Y, Lee S, Seo H, Jeon S, Moon W (2008) Label-free detection of a biomarker with piezoelectric micro cantilever based on mass micro balancing. J Assoc Lab Automation (JALA) 13:259–264CrossRefGoogle Scholar
  39. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapour detection. Nano Lett 3:929–933ADSCrossRefGoogle Scholar
  40. Li J, Stein D, McMullan C, Branton D, Azis MJ, Golovchenko JA (2001) Ion-beam sculpturing at nanometre length scale. Nature 412:166–169ADSCrossRefGoogle Scholar
  41. Liao Y-C Lin M Bao R Cheng J, Bai Y, Liu Y. Qu, Wang KL, Huang Y, Duan X, High-speed graphene transistors with a self-aligned gate. Nature 467:305–308 (2010)Google Scholar
  42. Lu J.-Q, Zhang X-G (2008) Nucleotide capacitance calculation for DNA sequencing. Biophys J 95:L60–L62CrossRefGoogle Scholar
  43. Lu Y, Goldsmith BR, Kybert NJ, Johnson ATC (2010) DNA-decorated graphene chemical sensors. Appl Phys Lett 97:083107ADSCrossRefGoogle Scholar
  44. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D 39:R387–R406ADSCrossRefGoogle Scholar
  45. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850ADSCrossRefGoogle Scholar
  46. Lundstrom M, Guo J (2006) Nanoscale transistors: device physics, modeling and simulation, Springer, HeidelbergGoogle Scholar
  47. Moore GE (1995) Lithography and the future of the Moore Law. Proc SPIE 2437:2–17ADSCrossRefGoogle Scholar
  48. Ma L, Cockroft SL (2010) Biological nanopores for single-molecule biophysics. ChemBioChem 11:25–34CrossRefGoogle Scholar
  49. Natori K (1994) Ballistic metal-oxide-semiconductor field effect transistor. J Appl Phys 76;4879–4890ADSCrossRefGoogle Scholar
  50. Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold antibody conjugates. Adv Mater 22:3521–3526CrossRefGoogle Scholar
  51. Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Dev 54:3400–3408ADSCrossRefGoogle Scholar
  52. Nishio M, et al. (2005) Carbon nanotube oscillator toward zeptogram detection. Appl Phys Lett 86:133111ADSCrossRefGoogle Scholar
  53. Ohtake T, Hamai C, Uono T, Tabata H, Kawai T (2004) Immobilization of probe DNA on \({\mathrm{Ta}}_{2}{\mathrm{O}}_{5}\) thin film and detection of hybridized helix DNA using IS-FET, Japanese. J Appl Phys 43:L1137–L1139ADSCrossRefGoogle Scholar
  54. Pearton SJ, Ren F, Wang Y-L, Chu BH, Chen KH, Chang CY, W. Lim, J. Lin, Norton DP (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Progr Mater Sci 55:1–59CrossRefGoogle Scholar
  55. Patolsky F, Timko BP, Zhang GF, Lieber CM (2007) Nanowire-based nanoelectronic devices in life sciences. MRS Bull 32:142–149CrossRefGoogle Scholar
  56. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:649–673ADSCrossRefGoogle Scholar
  57. Peng G, Hakim H, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103:542–551CrossRefGoogle Scholar
  58. Petersen KE (1978) Dynamic micromechanics on silicon; techniques and devices. IEEE Trans Electron Devices 25:1241–1249CrossRefGoogle Scholar
  59. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H, Peng S, Cho KJ (2003) Towards large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347–351ADSCrossRefGoogle Scholar
  60. Rahman A, Guo J, Datta S, Lundstrom MS (2003) Theory of ballistic nanotransistors. IEEE Trans Electron Devices 50:1853–1864ADSCrossRefGoogle Scholar
  61. Robelek R, Wegener J (2010) Label-free and time-resolved measurements of cell volume changes by surface plasmon resonance (SPR) spectroscopy. Biosensors 25:1221–1224Google Scholar
  62. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B 121:158–177CrossRefGoogle Scholar
  63. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655ADSCrossRefGoogle Scholar
  64. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167ADSCrossRefGoogle Scholar
  65. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496ADSCrossRefGoogle Scholar
  66. Skinner GM, van den Hout M, Broekmans O, Dekker C, Dekker NH (2009) Distinguishing single and double stranded nucleic molecules using solid state nanopores. Nano Lett 9:2593–2960CrossRefGoogle Scholar
  67. Sorgenfrei S, Chiu C-Y, Gonzalez Jr RL, Yu YJ, Kim P, Nuckolls C, Shepard KL (2011) Label-free single-molecule detection of DNA-hybridization kinetics with carbon nanotube field-effect transistor. Nat Nanotechnol 6:126–132ADSCrossRefGoogle Scholar
  68. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefGoogle Scholar
  69. Shur MS (2002) Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett 23:511–513ADSCrossRefGoogle Scholar
  70. Sapmaz S, Blatner YaM, Gurevich L, van der Zant HSJ (2003) Carbon nanotubes as nanoelectromechanical systems. Phys Rev B 67:235414ADSCrossRefGoogle Scholar
  71. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  72. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid state nanopores with single-nanometre precision. Nat Mater 2:537–540ADSCrossRefGoogle Scholar
  73. Stowe TD, Yasamura K, Kenny TW, Botkin D, Wago K, Rugar D (1997) Attonewton force detection using ultrathin silicon cantilevers. Appl Phys Lett 71:288–290ADSCrossRefGoogle Scholar
  74. Strike DJ, Meijerink MGH, Koudelka-Hep M (1999) Electronic noses – a mini-review Fresenius. J Anal Chem 364:499–505Google Scholar
  75. Van der Spiegel J (2004) Advances in microelectronics – from microscale to nanoscale devices. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology, Kluwer Academic Publishers, Dordrecht 217–259CrossRefGoogle Scholar
  76. Wang J, Lundstrom M (2003) Ballistic transport in high electron mobility transistors. IEEE Trans Electron Dev 50:1604–1609ADSCrossRefGoogle Scholar
  77. Wang Y-L, Chu BH, Chen KH, Chang CY, Lele TP, Papadi G, Coleman JK, Sheppard BJ, Dungen CF, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ, Ren F (2009) Fast detection of protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 94:243901ADSCrossRefGoogle Scholar
  78. Wanunu M, Dadosh T, Ray T, Jin J, McReynolds L, Drndi M (2010) Rapid electronic detection of microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814ADSCrossRefGoogle Scholar
  79. Xiang J, Wei L, Hu Y, Wu Y, Yan H, Lieber CM (2006) Ge/Si nanowire heterostructures as high performance field effect transistors. Nature 441:489–493ADSCrossRefGoogle Scholar
  80. Xu M, Fujita D, Hanagata N (2009) Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5:2638–2649CrossRefGoogle Scholar
  81. Xuan G, Kolodzey J, Kapoor V, Gonye G (2005) Characteristics of the field-effect devices with gate oxide modification by DNA. Appl Phys Lett 87:103903ADSCrossRefGoogle Scholar
  82. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001CrossRefGoogle Scholar
  83. Yuan W, Ho HP, Wong CL, Kong SK, Lin C (2006) Surface plasmon resonance biosensor incorporated in a Michelson interferometry with enhanced sensitivity. IEEE Sensor J 7:70–73CrossRefGoogle Scholar
  84. Zilberman Y, Tisch U, Shuster G, Pisula W, Feng X, Müllen K, Haick H (2010) Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv Mater 22:4317–4320CrossRefGoogle Scholar
  85. Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001CrossRefGoogle Scholar
  86. Zhu S-E, R. Shabani, J. Rho, Y. Kim, B.H. Hong, J.-H. Ahn, H.J. Cho (2011) Graphene-based bimorph microactuators. Nano Lett 11:977–981ADSCrossRefGoogle Scholar
  87. Zwolak M, Di Ventra M (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5:421–424ADSCrossRefGoogle Scholar
  88. Zwolak M, Di Ventra M (2008) Physical approaches to DNA sequencing and detection. Rev Mod Phys 80:141–165ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations