Skip to main content

Fundamentals on Bionanotechnologies

  • Chapter
  • First Online:
Bionanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 1239 Accesses

Abstract

This is the introductory chapter of the book. The basic theoretical and experimental facts regarding the application of electronics at the nanoscale and for biological systems are developed here. Transport phenomena at the nanoscale, the principles of nanotechnologies, the physical properties of biological materials, and micro/nanofluidics are reviewed and explained in this chapter. The knowledge gained in this chapter will then be used in the entire book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair JH, Li T, Havey KK, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Mater Sci Eng R 23:139–242

    Article  Google Scholar 

  • Appenzeller J, Radosavijevic M, Knoch J, Avouris Ph (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92:048301

    Article  ADS  Google Scholar 

  • Bandaru PR, Pichanusakorn P (2010) An outline of synthesis and properties of silicon nanowires. Semicond Sci Technol 25:024003

    Article  ADS  Google Scholar 

  • Biswas A, Wang T, Biris AS (2010) Single metal nanoparticles spectroscopy: optical characterization of individual nanosystems for biomedical applications. Nanoscale 2:1560–1572

    Article  ADS  Google Scholar 

  • Björk MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, Wallenberg LR, Samuelson L (2002) Nanowire resonant tunneling diode. Appl Phys Lett 81:4458–4460

    Article  ADS  Google Scholar 

  • Blake P, Noviselov KS, Castro Neto AH, Jiang D, Yang R, Booth TJ, Geim AK, Hill EW (2007) Making graphene visible. Appl Phys Lett 91:063124

    Article  ADS  Google Scholar 

  • Bowler DR (2004) Atomic-scale nanowires: physical and electronic structure. J Phys: Condens Mater 16:R721–R754

    Article  ADS  Google Scholar 

  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  ADS  Google Scholar 

  • Chen X, Guo Z, Yang G-M, Li J, Li M-Q, Liu J-H, Huang X-J (2010) Electrical nanogap devices for biosensing. Mater Today 13:28–41

    Article  Google Scholar 

  • Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and properties. Mater Sci Eng R43:103–138

    Google Scholar 

  • Cuniberti G, Craco L, Porath D, Dekker C (2002) Backbone-induced semiconducting behaviour in short DNA wires. Phys Rev B65:241314

    Article  ADS  Google Scholar 

  • Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • del Alamo JA, Eugster CC, Hu Q, Melloch MR, Rooks MJ (1998) Electron waveguide devices. Superlattice Microstruct 23:121–137

    Article  ADS  Google Scholar 

  • Di Ventra M, Zwolak M (2004) DNA electronics. In: Encyclopedia of nanoscience and nanotechnology. Nalwa HS (ed), American Scientific Publishers, California 1–19

    Google Scholar 

  • Dragoman D, Dragoman M (1999) Advanced optoelectronic devices. Springer, Berlin

    MATH  Google Scholar 

  • Dragoman D, Dragoman M (2001) Micro/nano-optoeletromechanical systems. Prog Quantum Electron 25:229–290

    Article  ADS  Google Scholar 

  • Dragoman D, Dragoman M (2004) Quantum-classical analogies. Springer, Berlin

    MATH  Google Scholar 

  • Dragoman M, Dragoman D (2009a) Nanoelectronics. Principles and devices. Artech House, London

    Google Scholar 

  • Dragoman M, Dragoman D (2009b) Graphene-based quantum electronics. Progr Quantum Electronics 33:165–214

    Article  ADS  Google Scholar 

  • Dragoman D, Dragoman M (2009c) The real-time detection of deoxyribonucleic acid bases via their negative differential conductance signature. Phys. Rev E 80:022901

    Article  ADS  Google Scholar 

  • Enders RG, Cox DL, Singh RRP (2004) The quest for high conductance DNA. Rev Mod Phys 76:195–214

    Article  ADS  Google Scholar 

  • Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26

    Article  Google Scholar 

  • Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties and biological applications. Small 6:2080–2098

    Article  Google Scholar 

  • Ferry DK, Goodnick SM (2009) Transport in nanostructures. Cambridge University Press, Cambridge

    Google Scholar 

  • Fink H-W, Schönenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410

    Article  ADS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  ADS  Google Scholar 

  • Geim AK (2009) Graphene: Status and prospects. Science 324:1530–1534

    Article  ADS  Google Scholar 

  • Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335

    Article  Google Scholar 

  • Gülseren O, Yildirim T, Ciraci S (2003) Formation of quantum structures on a single nanotube by modulating hydrogen adsorption. Phys Rev B 68:115419

    Article  ADS  Google Scholar 

  • Guo LJ (2004) Recent progress in nanoimprint technologies and its applications. J Phys D 37:R123–R141

    Article  ADS  Google Scholar 

  • Guo X, Gorodetsky AA, Hone J, Barton JK, Nuckolls C (2008) Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat Nanotechnol 3:163–167

    Article  ADS  Google Scholar 

  • Han MY et al (2007) Energy band-gap engineering of graphene nanoribbons. Appl Phys Lett 98:206805

    Article  Google Scholar 

  • Harriott LR, Hull R (2004) Nanolithography. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology. Kluwer Academic Publishers, Dordrecht 7–40

    Chapter  Google Scholar 

  • He Y, Dong H, Li T, Wang C, Shao W, Zhang Y, Jiang L, Hu W (2010) Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscope nanolithography. Appl Phys Lett 97:133301

    Article  ADS  Google Scholar 

  • Huie JC (2003) Guided molecular self-assembly: a review of recent efforts. Smart Mater Struct 12:264–271

    Article  ADS  Google Scholar 

  • Javey A, Kong J (eds) (2009) Carbon nanotube electronics. Springer, Heidelberg

    Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors Nano Lett 5:943–948

    Google Scholar 

  • Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1047

    Article  ADS  Google Scholar 

  • Kwon Y-W et al (2009) Material science of DNA. J Mater Chem 19:1353–1380

    Article  Google Scholar 

  • Lauhon LJ et al (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61

    Article  ADS  Google Scholar 

  • Lee M, Baik KY, Noah M, Kwon Y-K, Lee J-O, Hong S (2009) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab on a Chip 9, 2267–2280

    Article  Google Scholar 

  • Li T, Hu W, Zhu D (2010) Nanogap electrodes. Adv Mater 22:286–300

    Article  Google Scholar 

  • Meschede D, Metcalf H (2003) Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces. J Phys D 36:R17–R38

    Article  ADS  Google Scholar 

  • Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up—a review. Lab on a Chip 5:492–500

    Article  Google Scholar 

  • Novoselov KS, et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  Google Scholar 

  • Noy A, Park HG, Farnasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Nanofluidics in carbon nanotubes. Nanotoday 2:22–29

    Google Scholar 

  • Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96:248–270

    Article  Google Scholar 

  • Porath D, Bezryadin A, de Vries S, Dekker C (2000) Direct measurement of electrical transport through DNA molecules. Nature 403:635–637

    Article  ADS  Google Scholar 

  • Qian J, Liao S, Xu S, Stroscio MA, Dutta M (2009) Direct measurement of electrical transport through single DNA molecules. J Appl Phys 106:033702

    Article  ADS  Google Scholar 

  • Rao CNR, et al (2000) Metal nanoparticles, nanowires and carbon nanotubes. Pure Appl Chem 72:21–33

    Article  Google Scholar 

  • Rao SG, Huang L, Setyawan W, Hong S (2003) Large-scale assembly of carbon nanotubes. Nature 425:36–37

    Article  ADS  Google Scholar 

  • Rietman EA (2001) Molecular engineering of nanosystems. Springer, New York 158–185

    Google Scholar 

  • Romano P, Polcari A, Verruso B, Colantuoni V, Saldarriaga W, Baca E (2007) Nonlinear current-voltage characteristics measured across circular deoxyribonucleic acid (DNA) molecule bundles. J Appl Phys 102:103720

    Article  ADS  Google Scholar 

  • Ross FM (2010) Controlling nanowire structures through real time growth studies. Rep Prog Phys 73:114501

    Article  ADS  Google Scholar 

  • Saavedra HS, Mullen JT, Zhang P, Devey DC, Claridge SA, Weiss PS (2010) Hybrid strategies in nanolithography. Rep Prog Phys 73:036501

    Article  ADS  Google Scholar 

  • Saif T, Alaca E, Sehitoglu H, Nano wires by self assembly, 16th IEEE Annual Conference on Micro Electro Mechanical Systems MEMS 03, Kyoto, Japan, 19–23 January 2003, pp. 45–47

    Google Scholar 

  • Shenhar R, Norsten TB, Rotello VM (2004) Self-assembly and self-organization. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology. Kluwer Academic Publishers, Dordrecht pp 41–74

    Chapter  Google Scholar 

  • Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150

    Article  Google Scholar 

  • Sönmezolu S, Sönmezolu ÖA, Çankaya G, Yildirim A, Serin N (2010) Electrical characteristics of DNA-based metal-insulator-semiconductor structures. J Appl Phys 107:124518

    Article  ADS  Google Scholar 

  • Sounderya N, Zhang Y (2008) Use core/shell structured nanoparticles for biomedical applications. Recent Patents Biomed Eng 1:34–42

    Article  Google Scholar 

  • Sparreboom W, van den Berg A, Eijkel JCT (2010) Transport in nanofluidic system: a review of theory and applications. New J Phys 12:015004

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  ADS  Google Scholar 

  • Tabeling P (2009) A brief introduction to slippage, droplets and mixing in microfluidic systems. Lab on a Chip 9:2428–2439

    Article  Google Scholar 

  • Tan Y-W, et al (2007) Temperature dependent electron transport in graphene. Eur Phys J Special Topics 148:15–17

    Article  ADS  Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab on a Chip 8:108–220

    Article  Google Scholar 

  • Tian W-C, Finehout E (eds) (2008) Microfluidics for biological applications. Springer, Heidelberg

    Google Scholar 

  • Tian X, Li J, Xu D (2010) Nanowire-based nanogap electrodes by annealing of multisegmented Pt/Au/Pt nanowire stir. Electrochem Commun 12: 1081–1083

    Article  Google Scholar 

  • Tseng AA, Chen K, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent developments. IEEE Trans Electronic Packag Manufact 26:141–1949

    Article  Google Scholar 

  • Wacker A, Jauho A-P (1998) Quantum transport: the link between standard approaches in superlattices. Phys Rev Lett 80:369–372

    Article  ADS  Google Scholar 

  • Waigh T (2007) Applied biophysics: a molecular approach for physical scientists. Wiley, New York, p 206

    Google Scholar 

  • Wang N, Zhang RQ (2008) Growth of nanowires. Mater Sci Eng R 60:1–51

    Article  Google Scholar 

  • Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241

    Article  Google Scholar 

  • Xu M, Enders RG, Arakawa Y (2007) The electronic properties of DNA bases. Small 3:1539–1542

    Article  Google Scholar 

  • Yang D, et al (2010) Novel DNA materials and their applications. Wiley Interdisciplin Rev Nanomed Nanobiotechnol 2:648–669

    Article  Google Scholar 

  • Ziaie B, Baldi A, Atashbar MZ (2004) Introduction to Micro/Nanofabrication. In: Bhushan B (ed), Springer handbook of nanotechnology. Springer, Berlin 147–184

    Chapter  Google Scholar 

  • Zhu W (ed) (2001) Vacuum microelectronics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2012). Fundamentals on Bionanotechnologies. In: Bionanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25572-4_1

Download citation

Publish with us

Policies and ethics