Fundamentals on Bionanotechnologies

  • Daniela Dragoman
  • Mircea Dragoman
Part of the NanoScience and Technology book series (NANO)


This is the introductory chapter of the book. The basic theoretical and experimental facts regarding the application of electronics at the nanoscale and for biological systems are developed here. Transport phenomena at the nanoscale, the principles of nanotechnologies, the physical properties of biological materials, and micro/nanofluidics are reviewed and explained in this chapter. The knowledge gained in this chapter will then be used in the entire book.


Microfluidic Device Transmission Probability Electron Beam Lithography Negative Differential Resistance Coulomb Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adair JH, Li T, Havey KK, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Mater Sci Eng R 23:139–242CrossRefGoogle Scholar
  2. Appenzeller J, Radosavijevic M, Knoch J, Avouris Ph (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92:048301ADSCrossRefGoogle Scholar
  3. Bandaru PR, Pichanusakorn P (2010) An outline of synthesis and properties of silicon nanowires. Semicond Sci Technol 25:024003ADSCrossRefGoogle Scholar
  4. Biswas A, Wang T, Biris AS (2010) Single metal nanoparticles spectroscopy: optical characterization of individual nanosystems for biomedical applications. Nanoscale 2:1560–1572ADSCrossRefGoogle Scholar
  5. Björk MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, Wallenberg LR, Samuelson L (2002) Nanowire resonant tunneling diode. Appl Phys Lett 81:4458–4460ADSCrossRefGoogle Scholar
  6. Blake P, Noviselov KS, Castro Neto AH, Jiang D, Yang R, Booth TJ, Geim AK, Hill EW (2007) Making graphene visible. Appl Phys Lett 91:063124ADSCrossRefGoogle Scholar
  7. Bowler DR (2004) Atomic-scale nanowires: physical and electronic structure. J Phys: Condens Mater 16:R721–R754ADSCrossRefGoogle Scholar
  8. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355ADSCrossRefGoogle Scholar
  9. Chen X, Guo Z, Yang G-M, Li J, Li M-Q, Liu J-H, Huang X-J (2010) Electrical nanogap devices for biosensing. Mater Today 13:28–41CrossRefGoogle Scholar
  10. Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and properties. Mater Sci Eng R43:103–138Google Scholar
  11. Cuniberti G, Craco L, Porath D, Dekker C (2002) Backbone-induced semiconducting behaviour in short DNA wires. Phys Rev B65:241314ADSCrossRefGoogle Scholar
  12. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  13. del Alamo JA, Eugster CC, Hu Q, Melloch MR, Rooks MJ (1998) Electron waveguide devices. Superlattice Microstruct 23:121–137ADSCrossRefGoogle Scholar
  14. Di Ventra M, Zwolak M (2004) DNA electronics. In: Encyclopedia of nanoscience and nanotechnology. Nalwa HS (ed), American Scientific Publishers, California 1–19Google Scholar
  15. Dragoman D, Dragoman M (1999) Advanced optoelectronic devices. Springer, BerlinzbMATHGoogle Scholar
  16. Dragoman D, Dragoman M (2001) Micro/nano-optoeletromechanical systems. Prog Quantum Electron 25:229–290ADSCrossRefGoogle Scholar
  17. Dragoman D, Dragoman M (2004) Quantum-classical analogies. Springer, BerlinzbMATHGoogle Scholar
  18. Dragoman M, Dragoman D (2009a) Nanoelectronics. Principles and devices. Artech House, LondonGoogle Scholar
  19. Dragoman M, Dragoman D (2009b) Graphene-based quantum electronics. Progr Quantum Electronics 33:165–214ADSCrossRefGoogle Scholar
  20. Dragoman D, Dragoman M (2009c) The real-time detection of deoxyribonucleic acid bases via their negative differential conductance signature. Phys. Rev E 80:022901ADSCrossRefGoogle Scholar
  21. Enders RG, Cox DL, Singh RRP (2004) The quest for high conductance DNA. Rev Mod Phys 76:195–214ADSCrossRefGoogle Scholar
  22. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRefGoogle Scholar
  23. Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties and biological applications. Small 6:2080–2098CrossRefGoogle Scholar
  24. Ferry DK, Goodnick SM (2009) Transport in nanostructures. Cambridge University Press, CambridgeGoogle Scholar
  25. Fink H-W, Schönenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410ADSCrossRefGoogle Scholar
  26. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191ADSCrossRefGoogle Scholar
  27. Geim AK (2009) Graphene: Status and prospects. Science 324:1530–1534ADSCrossRefGoogle Scholar
  28. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384:322–335CrossRefGoogle Scholar
  29. Gülseren O, Yildirim T, Ciraci S (2003) Formation of quantum structures on a single nanotube by modulating hydrogen adsorption. Phys Rev B 68:115419ADSCrossRefGoogle Scholar
  30. Guo LJ (2004) Recent progress in nanoimprint technologies and its applications. J Phys D 37:R123–R141ADSCrossRefGoogle Scholar
  31. Guo X, Gorodetsky AA, Hone J, Barton JK, Nuckolls C (2008) Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat Nanotechnol 3:163–167ADSCrossRefGoogle Scholar
  32. Han MY et al (2007) Energy band-gap engineering of graphene nanoribbons. Appl Phys Lett 98:206805CrossRefGoogle Scholar
  33. Harriott LR, Hull R (2004) Nanolithography. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology. Kluwer Academic Publishers, Dordrecht 7–40CrossRefGoogle Scholar
  34. He Y, Dong H, Li T, Wang C, Shao W, Zhang Y, Jiang L, Hu W (2010) Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscope nanolithography. Appl Phys Lett 97:133301ADSCrossRefGoogle Scholar
  35. Huie JC (2003) Guided molecular self-assembly: a review of recent efforts. Smart Mater Struct 12:264–271ADSCrossRefGoogle Scholar
  36. Javey A, Kong J (eds) (2009) Carbon nanotube electronics. Springer, HeidelbergGoogle Scholar
  37. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors Nano Lett 5:943–948Google Scholar
  38. Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1047ADSCrossRefGoogle Scholar
  39. Kwon Y-W et al (2009) Material science of DNA. J Mater Chem 19:1353–1380CrossRefGoogle Scholar
  40. Lauhon LJ et al (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61ADSCrossRefGoogle Scholar
  41. Lee M, Baik KY, Noah M, Kwon Y-K, Lee J-O, Hong S (2009) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab on a Chip 9, 2267–2280CrossRefGoogle Scholar
  42. Li T, Hu W, Zhu D (2010) Nanogap electrodes. Adv Mater 22:286–300CrossRefGoogle Scholar
  43. Meschede D, Metcalf H (2003) Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces. J Phys D 36:R17–R38ADSCrossRefGoogle Scholar
  44. Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up—a review. Lab on a Chip 5:492–500CrossRefGoogle Scholar
  45. Novoselov KS, et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSCrossRefGoogle Scholar
  46. Noy A, Park HG, Farnasiero F, Holt JK, Grigoropoulos CP, Bakajin O (2007) Nanofluidics in carbon nanotubes. Nanotoday 2:22–29Google Scholar
  47. Pease RF, Chou SY (2008) Lithography and other patterning techniques for future electronics. Proc IEEE 96:248–270CrossRefGoogle Scholar
  48. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Direct measurement of electrical transport through DNA molecules. Nature 403:635–637ADSCrossRefGoogle Scholar
  49. Qian J, Liao S, Xu S, Stroscio MA, Dutta M (2009) Direct measurement of electrical transport through single DNA molecules. J Appl Phys 106:033702ADSCrossRefGoogle Scholar
  50. Rao CNR, et al (2000) Metal nanoparticles, nanowires and carbon nanotubes. Pure Appl Chem 72:21–33CrossRefGoogle Scholar
  51. Rao SG, Huang L, Setyawan W, Hong S (2003) Large-scale assembly of carbon nanotubes. Nature 425:36–37ADSCrossRefGoogle Scholar
  52. Rietman EA (2001) Molecular engineering of nanosystems. Springer, New York 158–185Google Scholar
  53. Romano P, Polcari A, Verruso B, Colantuoni V, Saldarriaga W, Baca E (2007) Nonlinear current-voltage characteristics measured across circular deoxyribonucleic acid (DNA) molecule bundles. J Appl Phys 102:103720ADSCrossRefGoogle Scholar
  54. Ross FM (2010) Controlling nanowire structures through real time growth studies. Rep Prog Phys 73:114501ADSCrossRefGoogle Scholar
  55. Saavedra HS, Mullen JT, Zhang P, Devey DC, Claridge SA, Weiss PS (2010) Hybrid strategies in nanolithography. Rep Prog Phys 73:036501ADSCrossRefGoogle Scholar
  56. Saif T, Alaca E, Sehitoglu H, Nano wires by self assembly, 16th IEEE Annual Conference on Micro Electro Mechanical Systems MEMS 03, Kyoto, Japan, 19–23 January 2003, pp. 45–47Google Scholar
  57. Shenhar R, Norsten TB, Rotello VM (2004) Self-assembly and self-organization. In: Di Ventra M, Evoy S, Heflin JR Jr (eds) Introduction to nanoscale science and technology. Kluwer Academic Publishers, Dordrecht pp 41–74CrossRefGoogle Scholar
  58. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150CrossRefGoogle Scholar
  59. Sönmezolu S, Sönmezolu ÖA, Çankaya G, Yildirim A, Serin N (2010) Electrical characteristics of DNA-based metal-insulator-semiconductor structures. J Appl Phys 107:124518ADSCrossRefGoogle Scholar
  60. Sounderya N, Zhang Y (2008) Use core/shell structured nanoparticles for biomedical applications. Recent Patents Biomed Eng 1:34–42CrossRefGoogle Scholar
  61. Sparreboom W, van den Berg A, Eijkel JCT (2010) Transport in nanofluidic system: a review of theory and applications. New J Phys 12:015004CrossRefGoogle Scholar
  62. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026ADSCrossRefGoogle Scholar
  63. Tabeling P (2009) A brief introduction to slippage, droplets and mixing in microfluidic systems. Lab on a Chip 9:2428–2439CrossRefGoogle Scholar
  64. Tan Y-W, et al (2007) Temperature dependent electron transport in graphene. Eur Phys J Special Topics 148:15–17ADSCrossRefGoogle Scholar
  65. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab on a Chip 8:108–220CrossRefGoogle Scholar
  66. Tian W-C, Finehout E (eds) (2008) Microfluidics for biological applications. Springer, HeidelbergGoogle Scholar
  67. Tian X, Li J, Xu D (2010) Nanowire-based nanogap electrodes by annealing of multisegmented Pt/Au/Pt nanowire stir. Electrochem Commun 12: 1081–1083CrossRefGoogle Scholar
  68. Tseng AA, Chen K, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent developments. IEEE Trans Electronic Packag Manufact 26:141–1949CrossRefGoogle Scholar
  69. Wacker A, Jauho A-P (1998) Quantum transport: the link between standard approaches in superlattices. Phys Rev Lett 80:369–372ADSCrossRefGoogle Scholar
  70. Waigh T (2007) Applied biophysics: a molecular approach for physical scientists. Wiley, New York, p 206Google Scholar
  71. Wang N, Zhang RQ (2008) Growth of nanowires. Mater Sci Eng R 60:1–51CrossRefGoogle Scholar
  72. Wei D, Liu Y (2010) Controllable synthesis of graphene and its applications. Adv Mater 22:3225–3241CrossRefGoogle Scholar
  73. Xu M, Enders RG, Arakawa Y (2007) The electronic properties of DNA bases. Small 3:1539–1542CrossRefGoogle Scholar
  74. Yang D, et al (2010) Novel DNA materials and their applications. Wiley Interdisciplin Rev Nanomed Nanobiotechnol 2:648–669CrossRefGoogle Scholar
  75. Ziaie B, Baldi A, Atashbar MZ (2004) Introduction to Micro/Nanofabrication. In: Bhushan B (ed), Springer handbook of nanotechnology. Springer, Berlin 147–184CrossRefGoogle Scholar
  76. Zhu W (ed) (2001) Vacuum microelectronics. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics Dept.Univ. BucharestBucharest-MagureleRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharest-VoluntariRomania

Personalised recommendations