Skip to main content

Electron Loss, Excitation, and Pair Production in Relativistic Collisions of Heavy Atomic Particles

  • Chapter
  • First Online:
Atomic Processes in Basic and Applied Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 68))

  • 1328 Accesses

Abstract

We present a short review on some of the recent developments in the field of relativistic atomic collisions. In this review, we consider several processes which take place in collisions at high (relativistic) energies. They include: (a) projectile-electron excitation and loss in collisions between an ion, which initially carries electron(s), and a neutral atom; (b) bound-free electron-positron pair production in collisions between a bare nucleus and a neutral atom; and (c) bound–bound pair production in collisions between bare nuclei, which becomes possible only if the colliding nuclei possess electric charges of opposite sign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A so strong field has an amplitude of the order of the so-called critical field \({E}_{cr} = {m}^{2}{c}^{3}/\hslash e = 1.3 \times1{0}^{16}\;\text{ V/cm}\), where eis the absolute value of the electron charge.

References

  1. J. Eichler, W.E. Meyerhof, Relativistic Atomic Collisions(Academic, San Diego, 1995)

    Google Scholar 

  2. D.S.F. Crothers, Relativistic Heavy-Particle Collision Theory(Kluwer Academic/Plenum Publishers, London, 2000)

    Google Scholar 

  3. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)

    Google Scholar 

  4. A. Voitkiv, J. Ullrich, Relativistic Collisions of Structured Atomic Particles(Springer, Berlin, 2008)

    Google Scholar 

  5. R. Anholt, W.E. Meyerhof, X.-Y. Xu, H. Gould, B. Feinberg, R.J. McDonald, H.E. Wigner, P. Thieberger, Phys. Rev. A 36, 1586 (1987)

    Google Scholar 

  6. W.E. Meyerhof, R. Anholt, X.-Y. Xu, H. Gould, B. Feinberg, R.J. McDonald, H.E. Wegner, P. Thieberger, NIM A 262, 10 (1987)

    Google Scholar 

  7. H.-P. Hülskötter, W.E. Meyerhof, E. Dillard, N. Guardala, Phys. Rev. Lett. 63, 1938 (1989)

    Google Scholar 

  8. H.-P. Hülskötter, B. Feinberg, W.E. Meyerhof, A. Belkacem, J.R. Alonso, L. Blumenfeld, E.A. Dillard, H. Gould, N. Guardala, G.F. Krebs, M.A. McMahan, M.E. Rhoades-Brown, B.S. Rude, J. Schweppe, D.W. Spooner, K. Street, P. Thieberger, H. E. Wegner, Phys. Rev. A 44, 1712 (1991)

    Google Scholar 

  9. Th. Stöhlker, C.D. Ionesku, P. Rymuza, T. Ludziejewski, P.H. Mokler, C. Scheidenberger, F. Bosch, B. Franzke, H. Geissel, O. Klepper, C. Kozhuharov, R. Moshammer, F. Nickel, H. Reich, Z. Stachura, A. Warczak, Nucl. Instrum. Methods B 124, 160 (1997)

    Google Scholar 

  10. C. Scheidenberger, H. Geissel, Nucl. Instrum. Methods B 13525 (1998)

    Google Scholar 

  11. C. Scheidenberger, Th. Stölker, W.E. Meyerhof, H. Geissel, P.H. Mokler, B. Blank, Nucl. Instrum. Methods B 142, 441 (1998)

    Google Scholar 

  12. T. Ludziejewsky, T. Stöhlker, C.D. Ionesku, P. Rymuza, H. Beyer, F. Bosch, C. Kozhuharov, A. Krämer, D. Liesen, P.H. Mokler, Z. Stachura, P. Swiat, A. Warczak, R.W. Dunford, Phys. Rev. A 61, 052706 (2000)

    Google Scholar 

  13. H. Bräuning et al., Phys. Scr. T92, 43 (2001)

    Google Scholar 

  14. A. Westphal, Y.D. He, Phys. Rev. Lett. A 71, 1160 (1993)

    Google Scholar 

  15. N. Claytor, A. Belkacem, T. Dinneen, B. Feinberg, H. Gould, Phys. Rev. A 55, R842 (1997)

    Google Scholar 

  16. H.F. Krause, C.R. Vane, S. Datz, P. Grafström, H. Knudsen, S. Scheidenberger, R.H. Schuch, Phys. Rev. Lett. 80, 1190 (1998)

    Google Scholar 

  17. H.F. Krause, C.R. Vane, S. Datz, P. Grafström, H. Knudsen, U. Mikkelsen, S. Scheidenberger, R.H. Schuch, Z. Vilakazi, Phys. Rev. A 63, 032711 (2001)

    Google Scholar 

  18. C.R. Vane, H.F. Krause, Nucl. Instrum. Meth. B 261, 244 (2007)

    Google Scholar 

  19. A.B. Voitkiv, B. Najjari, A. Surzhykov, J. Phys. B 41, 111001 (2008)

    Google Scholar 

  20. A.B. Voitkiv, N. Grün, W. Scheid, Phys. Rev. A 61, 052704 (2000)

    Google Scholar 

  21. A.B. Voitkiv, M. Gail, N. Grün, J. Phys. B 33, 1299 (2000)

    Google Scholar 

  22. A.B. Voitkiv, B. Najjari, J. Ullrich, Phys. Rev. A 75, 062716 (2007)

    Google Scholar 

  23. A.B. Voitkiv, B. Najjari, J. Ullrich, Phys. Rev. A 76, 022709 (2007)

    Google Scholar 

  24. A.B. Voitkiv, B. Najjari, J. Phys. B 403295 (2007)

    Google Scholar 

  25. D.S.F. Crothers, J.F. McCann, J. Phys. B 16, 3229 (1983)

    Google Scholar 

  26. P.D. Fainstein, V.H. Ponce, R.D. Rivarola, J. Phys. B 24, 3091 (1991)

    Google Scholar 

  27. C. Müller, A.B. Voitkiv, N. Grün, Phys. Rev. A 66, 012716 (2002)

    Google Scholar 

  28. B. Najjari, A.B. Voitkiv, J. Phys. B 41, 115202 (2008)

    Google Scholar 

  29. R. Anholt, U. Becker, Phys. Rev. A 36, 4628 (1987)

    Google Scholar 

  30. A.H. Sørensen, Phys. Rev. A 58, 2895 (1998)

    Google Scholar 

  31. A.B. Voitkiv, B. Najjari, V.P. Shevelko, Phys. Rev. A 82, 022707 (2010)

    Google Scholar 

  32. FAIR Baseline Technical Report, A 582895. http://www.gsi.de/fair/reports/btr.html(1998)

  33. G. Baur, I.L. Beigman, I.Yu. Tolstikhina, V.P. Shevelko, Th. Sthlker, Phys. Rev. A B 80, 012713 (2009)

    Google Scholar 

  34. V.P. Shevelko, I.L. Beigman, M.S. Litsarev, H. Tawara, I.Yu. Tolstikhina, G. Weber, Nucl. Instrum. Meth. B 269, 1455 (2011)

    Google Scholar 

  35. B. Franzke, IEEE Trans. Nucl. Sci. 28, 2116 (1981)

    Google Scholar 

  36. R.E. Olson, R.L. Watson, V. Horvat et al., J. Phys. B 37, 4539 (2004)

    Google Scholar 

  37. G. Weber, C. Omet, R.D. DuBois et al., Phys. Rev. ST Accel. Beams 12, 099901 (2009)

    Google Scholar 

  38. W. Erb, GSI Report GSI-P-78, Darmstadt (1978)

    Google Scholar 

  39. A.N. Perumal, V. Horvat, R.L. Watson et al., Nucl. Instrum. Meth. B 227, 251 (2005)

    Google Scholar 

  40. F. Sauter, Z. Phys. 69, 742 (1931)

    Google Scholar 

  41. H.A. Bethe, W. Heitler, Proc. Roy. Soc. A 146, 83 (1934)

    Google Scholar 

  42. L.D. Landau, E.M. Lifshitz, Phys. Z. Sowjet. 6, 244 (1934)

    Google Scholar 

  43. U. Becker, N. Grün, W. Scheid, J. Phys. B 20, 2075 (1987)

    Google Scholar 

  44. U. Becker, J. Phys. B 20, 6563 (1987)

    Google Scholar 

  45. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Y. Kharlov, Phys. Rep. 364, 359 (2002)

    Google Scholar 

  46. G. Baur, K. Hencken, D. Trautman, Phys. Rep. 453, 1 (2007)

    Google Scholar 

  47. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Google Scholar 

  48. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields(Springer, Berlin, 1985)

    Google Scholar 

  49. E. Brézin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)

    Google Scholar 

  50. V.N. Baier, V.M. Katkov, Phys. Rep. 409, 261 (2005)

    Google Scholar 

  51. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space(Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  52. A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Phys. Rev. Lett. 71, 1514 (1993)

    Google Scholar 

  53. A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Phys. Rev. Lett. 73, 2432 (1994)

    Google Scholar 

  54. A. Belkacem, H. Gould, B. Feinberg, R. Bossingham, W.E. Meyerhof, Phys. Rev. A 56, 2806 (1997)

    Google Scholar 

  55. A. Belkacem, N. Claytor, T. Dinneen, B. Feinberg, H. Gould, Phys.Rev. A 58, 1253 (1998)

    Google Scholar 

  56. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Google Scholar 

  57. H. Chen et al., Phys. Rev. Lett. 102, 105001 (2009)

    Google Scholar 

  58. See the European Light Infrastructure at http://www.extreme-light-infrastructure.euand the High Power laser Energy Research at http://www.hiperlaser.org

  59. R. Anholt, H. Gould, Adv. Atom. Mol. Phys. 22315 (1986)

    Google Scholar 

  60. A.B. Voitkiv, B. Najjari, A. DiPiazza, New J. Phys. 12, 063011 (2010)

    Google Scholar 

  61. R. J. Hughes, Hyperfine Interact. 76, 3 (1993)

    Google Scholar 

  62. A.J. Baltz, Phys. Rev. Lett. 78, 1231 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voitkiv, A.B., Najjari, B. (2012). Electron Loss, Excitation, and Pair Production in Relativistic Collisions of Heavy Atomic Particles. In: Shevelko, V., Tawara, H. (eds) Atomic Processes in Basic and Applied Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25569-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25569-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25568-7

  • Online ISBN: 978-3-642-25569-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics