Atomic Processes in Dusty Plasmas

  • D.-H. Ki
  • Y.-D. Jung
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 68)


Various atomic processes are investigated in dusty plasmas including strong collective interactions. The effects of ion temperature on the electron–dust collision process are investigated in complex dusty plasmas. It is found that the eikonal scattering phase and electron–dust grain collision cross section decrease with decreasing ion temperature in dusty plasmas. The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is found that the ion wake effects enhance the Coulomb ion drag force. The effects of electron temperature and density on the ion–dust grain bremsstrahlung process are investigated in dusty plasmas. It is found that the ion–dust bremsstrahlung radiation cross section decreases with increasing electron density in dusty plasmas.


Electron Temperature Dusty Plasma Debye Length Collision Cross Section Charged Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (Y.-D. J.) gratefully acknowledges Dr. M. Rosenberg for the useful discussions and warm hospitality while visiting the Department of Electrical and Computer Engineering at the University of California, San Diego. He would also like to thank Prof. H. Tawara, Prof. T. Kato, Prof. M. Sato, Prof. Y. Hirooka, Prof. I. Murakami, and Prof. D. Kato for their warm hospitality and support while visiting the National Institute for Fusion Science (NIFS) in Japan as a long-term visiting professor. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (Grant No. 2011–0003099).


  1. 1.
    D.A. Mendis, M. Rosenberg, Ann. Rev. Astron. Astrophys. 32, 419 (1994)Google Scholar
  2. 2.
    A. Bouchoule, Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing(Wiley, Chichester, 1999)Google Scholar
  3. 3.
    P.K. Shukla, A.A. Mamum, Introduction to Dusty Plasma Physics(Institute of Physics Publishing, Bristol, 2002)Google Scholar
  4. 4.
    T.S. Ramazanov, K.N. Dzhumagulova, A.N. Jumabekov, M.K. Dosbolayev, Phys. Plasmas 15, 053704 (2008)Google Scholar
  5. 5.
    S.A. Maiorov, T.S. Ramazanov, K.N. Dzhumagulova, A.N. Jumabekov, M.K. Dosbolayev, Phys. Plasmas 15, 093701 (2008)Google Scholar
  6. 6.
    V. Fortov, I. Iakubov, A. Khrapak, Physics of Strongly Coupled Plasma(Oxford University Press, Oxford, 2006)Google Scholar
  7. 7.
    S.P. Khare: Introduction to the Theory of Collisions of Electrons with Atoms and Molecules(Plenum, New York, 2002)Google Scholar
  8. 8.
    Z. Metawei, Acta Phys. Polonica B 31, 713 (2000)Google Scholar
  9. 9.
    S. Vidhya Lakshmi, R. Bharuthram, P.K. Shukla, Astrophys. Space Sci. 209, 213 (1993)Google Scholar
  10. 10.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1952)Google Scholar
  11. 11.
    D.-H. Ki, Y.-D. Jung, J. Appl. Phys. 108, 086101 (2010)Google Scholar
  12. 12.
    P. Bliokh, V. Sinitsin, V. Yaroshenko, Dusty and Self-Gravitational Plasma in Space(Kluwer, Dordrecht, 1995)Google Scholar
  13. 13.
    V.N. Tsytovich, G.E. Morfill, S.V. Vladimirov, H. Thomas, Elementary Physics of Complex Plasmas(Springer, Berlin, 2008)Google Scholar
  14. 14.
    J. Perrin, P. Molinas-Mata, P. Belenguer, J. Phys. D 27, 2499 (1994)Google Scholar
  15. 15.
    J.E. Daugherty, D.B. Graves, J. Appl. Phys. 78, 2279 (1995)Google Scholar
  16. 16.
    H.F. Beyer, V.P. Shevelko, Introduction to the Physics of Highly Charged Ions(Institute of Physics Publishing, Bristol, 2003)Google Scholar
  17. 17.
    G. Morfill, A.V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009)Google Scholar
  18. 18.
    V.E. Fortov, G.E. Morfill, Complex and Dusty Plasma(CRC Press, Boca Raton, 2010)Google Scholar
  19. 19.
    R.J. Gould, Electromagnetic Processes(Princeton University Press, Princeton, 2006)Google Scholar
  20. 20.
    G.A. Kobzev, I.T. Iakubov, M.M. Popovich, Transport and Optical Properties of Nonideal Plasmas(Plenum, New York, 1995)Google Scholar
  21. 21.
    S. Geltman, Topics in Atomic Collision(Krieger, Malabar, 1997)Google Scholar
  22. 22.
    V.L. Ginzburg, Application of Electrodynamics in Theoretical Physics and Astrophysics(Gordon and Breach, New York, 1989)Google Scholar
  23. 23.
    P.K. Shukla, L. Stenflo, R. Bingham, Phys. Lett. A 359, 218 (2006)Google Scholar
  24. 24.
    L. Spitzer Jr., Physical Processes in the Interstellar Medium(Wiley, New York, 1978)Google Scholar
  25. 25.
    D.-H. Ki, Y.-D. Jung, Appl. Phys. Lett. 97, 101502 (2010)Google Scholar
  26. 26.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms(Springer, Berlin, 1957)Google Scholar
  27. 27.
    G. Bekefi, Radiation Processes in Plasmas(Wiley, New York, 1966)Google Scholar
  28. 28.
    H. Totsuji, Phys. Rev. A 32, 3005 (1985)Google Scholar
  29. 29.
    V.P. Shevelko, Atoms and Their Spectroscopic Properties(Springer, Berlin, 1997)Google Scholar
  30. 30.
    H.F. Beyer, H.-J. Kluge, V.P. Shevelko, X-Ray Radiation of Highly Charged Ions(Springer, Berlin, 1997)Google Scholar
  31. 31.
    V. Shevelko, H. Tawara, Atomic Multielectron Processes(Springer, Berlin, 1998)Google Scholar
  32. 32.
    J.D. Jackson, Classical Electrodynamics(Wiley, New York, 1962)Google Scholar
  33. 33.
    G. Arfken, Mathematical Methods for Physicists(Academic, New York 1966)Google Scholar
  34. 34.
    S.A. Khrapak, G.E. Morfill, Phys. Plasmas 15, 084502 (2008)Google Scholar
  35. 35.
    Y.-D. Jung, I. Murakami, J. Appl. Phys. 105, 106106 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D.-H. Ki
    • 1
  • Y.-D. Jung
    • 1
  1. 1.Department of Applied PhysicsHanyang UniversityAnsan-siKorea

Personalised recommendations