Atomic and Molecular Data for Industrial Application Plasmas

  • M.-Y. Song
  • D.-C. Kwon
  • W.-S. Jhang
  • S.-H. Kwang
  • J.-H. Park
  • Y.-K. Kang
  • J.-S. Yoon
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 68)


As interest has increased in the interaction between low-temperature plasmas and materials, the role of modeling and simulation of processing plasmas has become important in understanding the effects of charged particles and radicals in plasma applications. Also, in order to understand the behavior and properties of chemically active plasma, atomic and molecular processes have become a rapidly growing area of scientific endeavor that holds great promise for practical applications for industrial fields. Thus, in this chapter, we briefly introduce the applications of low-temperature plasma, especially plasma processing in semiconductor manufacturing, and what kind of data needed in plasma processing, how to develop the reaction mechanisms, and how it applied to the simulation. 0D global modeling of ICP plasma-etching equipment and development of a two-dimensional fluid simulator for a SiH4discharge are given as an example. In addition, we introduce the line-intensity ratio method for plasma diagnostic, it can be a good example how atomic and molecular data can be used plasma diagnostics.


Electron Temperature Rate Coefficient Line Ratio Bias Power Anomalous Skin Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges the collaboration of many colleagues in preparing this chapter. Especially thanks to Prof. Y. Itikawa, Prof. H. Tanaka, and Prof. H. Cho for their helpful discussions and the provision of meaningful information. Also author thanks to Dr. Young-Woo Kim, Dae-Chul Kim, Yong-Hyun. Kim, and Dr. Jong-Sik Kim for their unlimited efforts on A+M data research activities.

This work was supported by the Basic Plasma Research(National Fusion Research Institute) and grant funded by the Ministry of Education, Science and Technology. Also, partially supported by the Development of Korea National Standard Reference Dataand program funded by the Ministry of Knowledge Economy.


  1. 1.
    M. Loidl et al., Mucl. Instr. Meth. A 559, 769 (2006)Google Scholar
  2. 2.
    D.W. Shoesmith, J. Nucl. Mater. 282, 1 (2000)Google Scholar
  3. 3.
    G.R. Choppin, M.Kh. Khankhasayev, in Chemical Separation Technologies and Related Methods of Nuclear Waste Management. NATO Science Series (Kluwer, Dordrecht, 1999)Google Scholar
  4. 4.
    National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges(National Academic Press, Washington, DC, 1991)Google Scholar
  5. 5.
    National Research Council: Database Needs for Modeling and Simulation of Plasma Processing(National Academic Press, Washington, DC, 1996)Google Scholar
  6. 6.
    J. Meichsner, in Low Temperature Plasmas in Plasma Physics: Confinement, Transport and Collective Effects. ed. by A. Dinklage et al. Springer Lecture Notes, vol. 670 (Springer, Berlin, 2005)Google Scholar
  7. 7.
    National Research Council: Plasma Science: Advancing Knowledge in the National Interest(National Academy Press, Washington, DC, 2010)Google Scholar
  8. 8.
    Report of the Basic Energy Science Workshop on Electron Scattering for Materials Characterization, Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond, Report of a U.S. Department of Energy Office of Basic Energy Science Workshop, March 1–2, 2007, Washington DCGoogle Scholar
  9. 9.
    N.J. Mason: Electron Driven Processes: Scientific Challenges and Technological Opportunities(Springer, Berlin, 2005)Google Scholar
  10. 10.
    D.B. Graves, M.J. Kushner, Low Temperature Plasma Science: Not only the Fourth State of Matter but All of Them, Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25–27, (2008)Google Scholar
  11. 11.
    T. Makabe, Z. Petrovic, in Plasma Electronics: Applications in Microelectronic Device Fabrication. Series in Plasma Physics (Taylor & Francis, London, 2006)Google Scholar
  12. 12.
    A. Fridman Plasma Chemistry(Cambridge University Press, New York, 2008)Google Scholar
  13. 13.
    N.J. Mason: J. Phys. D Appl. Phys. 42, 194003 (2009)Google Scholar
  14. 14.
    H.W. Lee et al., J. Phys. D Appl. Phys. 44, 053001 (2011)Google Scholar
  15. 15.
    M.J. Kushner, Bull. Am. Phys. Soc. 55, 107 (2010)Google Scholar
  16. 16.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and MaterialsProcessing, 2nd edn. (Wiley-Interscience, New York, 2005)Google Scholar
  17. 17.
    R.L. Champion, L.D. Doverspike, in Electron-Molecule Interactions and Their Applications, ed. by L.G. Christophorou (Academic, New York, 1984)Google Scholar
  18. 18.
    J.D. Morrison, A.J. Nicholson, J. Chem. Phys. 20, 1021 (1952)Google Scholar
  19. 19.
    R. Basner, R. Foest, M. Schmidt, F. Hempel, K. Becker, in Ions and Neutrals in the Ar-TEOS RF Discharge. Proceedings of the 23rd International Conference on Phenomena in Ionized Gases, vol. IV, Toulouse, July 1997, pp. 196–197Google Scholar
  20. 20.
    D.C. Schram, M.C.M. van de Sanden, R.J. Severens, W.M.M. Kessels, J. Phys. IV 8, 217–230 (1998)Google Scholar
  21. 21.
    B.F. Gordiets, C.M. Ferreira, M.J. Pinheiro, A. Ricard, Plasma Sources Sci. Technol. 7, 363–378, 378–388 (1998)Google Scholar
  22. 22.
    M. Hayashi, Nagoya Institute of Technology Report, No. IPPJ-AM-19 (1991)Google Scholar
  23. 23.
    D. Rapp, P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965)Google Scholar
  24. 24.
    S. Tinck, W. Boullart, A. Bogaerts, J. Phys. D 41, 065207 (2008)Google Scholar
  25. 25.
    A.V. Vasenkov, X. Li, G.S. Oehrlein, M.J. Kushner, J. Vac. Sci. Technol. A 22, 511 (2004)Google Scholar
  26. 26.
    N.S. Yoon, S.S. Kim, C.S. Chang, D.I. Choi, J. Korean Phys. Soc. 28, 172 (1995)Google Scholar
  27. 27.
    Z.L. Dai, Y.N. Wang, T.C. Ma, Phys. Rev. E 65, 036403 (2002)Google Scholar
  28. 28.
    A. Metze, D.W. Ernie, H.J. Oskam, J. Appl. Phys. 60, 3081 (1986)Google Scholar
  29. 29.
    T. Panagopoulos, D.J. Economou, J. Appl. Phys. 85, 3435 (1999)Google Scholar
  30. 30.
    E.A. Edelberg, E.S. Aydil, J. Appl. Phys. 86, 4799 (1999)Google Scholar
  31. 31.
    P.A. Miller, M.E. Riley, J. Appl. Phys. 82, 3689 (1997)Google Scholar
  32. 32.
    M.A. Sobolewski, J.-H. Kim, J. Appl. Phys. 102, 113302 (2007)Google Scholar
  33. 33.
  34. 34.
    M. Vinodkumar, C. Limbachiya, K. Korot, K.N. Joshipura, Eur. Phys. J. D 48, 333 (2008)Google Scholar
  35. 35.
    M.J. Kuchner, J. Appl. Phys. 63, 2532 (1988)Google Scholar
  36. 36.
    E. Meeks, R.S. Larson, P. Ho, S.M. Han, E. Edelberg, E.S. Aydil, J. Vac. Sci. Technol. A 16, 544 (1998)Google Scholar
  37. 37.
    J.L. Giuliani, V.A. Shamamian, R.E. Thomas, J.P. Apruzese, M. Mulbrandon, R.A. Rudder, R.C. Hendry, A.E. Robson, IEEE Trans. Plasma Sci. 27, 1317 (1999)Google Scholar
  38. 38.
    O. Leroy, G. Gousset, L.L. Alves, J. Perrin, J. Jolly, Plasma Sources Sci. Technol. 7, 348 (1998)Google Scholar
  39. 39.
    C.R. Kleijin, Thin Solid Films 365, 294 (2000)Google Scholar
  40. 40.
    J.S. Yoon, M.Y. Song, J.M. Han, S.H. Hwang, W.S. Chang, B.J. Lee, J. Phys. Chem. Ref. Data 37, 913 (2008)Google Scholar
  41. 41.
    T. Shimada, Y. Nakamura, Z.L. Petrovic, T. Makabe, J. Phys. D Appl. Phys. 36, 1936 (2003)Google Scholar
  42. 42.
    N. Sato, Y. Shida, Jpn. J. Appl. Phys. 36, 4794 (1997)Google Scholar
  43. 43.
    I.H. Hutchinson, Principles of Plasma Diagnostics, 2nd edn. (Cambridge University Press, Cambridge, 2002)Google Scholar
  44. 44.
    H.R. Griem, Plasma Spectroscopy(McGraw-Hill, New York, 1965), pp. 243–253Google Scholar
  45. 45.
    R. Mewe, Brit. J. Appl. Phys. 18, 107 (1967)Google Scholar
  46. 46.
    B. Schweer, G. Mank, A. Pospieszczyk, B. Brosda, B. Pohlmeyer, J. Nucl. Mater. 196–198, 174 (1995)Google Scholar
  47. 47.
    R.F. Biovin, J.L. Kline, E.E. Scime, Phys. Plasmas 8, 5303 (2001)Google Scholar
  48. 48.
    N.K. Podder et al., Phys. Plasmas 11, 5436 (2004)Google Scholar
  49. 49.
    S.P. Cunningham, in Conference on Thermonuclear Reactors, Livermore, U.S. Atomic Energy Commission Rep., vol. 279, p. 289 (1955)Google Scholar
  50. 50.
    R.W.P. McWhiter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York, 1965), ch. 5Google Scholar
  51. 51.
    S.J. Davies, P.D. Morgan et al., J. Nucl. Mater. 241–243, 426 (1997)Google Scholar
  52. 52.
    Y. Andrew, S.J. Davies et al., J. Nucl. Mater. 266–269, 1234 (1999)Google Scholar
  53. 53.
    Y. Andrew, M.G. O’Mullane, Plasma Phys. Contr. Fusion 42, 301 (2000)Google Scholar
  54. 54.
    W.L. Wiese, M.W. Smith, B.M Glennon, Atomic Transitions Probabilities, vol. 1, National Standard Reference Data System NSRDS-NBS-4 (1996)Google Scholar
  55. 55.
    D.C. Kwon, W.S. Chang, M. Park, D.H. You, M.Y. Song, S.J. You, Y.H. Im, J.S. Yoon, J. Appl. Phys. 109, 073311 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M.-Y. Song
    • 1
  • D.-C. Kwon
    • 1
  • W.-S. Jhang
    • 1
  • S.-H. Kwang
  • J.-H. Park
    • 1
  • Y.-K. Kang
    • 1
  • J.-S. Yoon
    • 1
  1. 1.National Fusion Research InstituteYuseong-GuKorea

Personalised recommendations