Analysing the Performance of Different Population Structures for an Agent-Based Evolutionary Algorithm

  • J. L. J. Laredo
  • J. J. Merelo
  • C. M. Fernandes
  • A. M. Mora
  • M. G. Arenas
  • P. A. Castillo
  • P. Garcia-Sanchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

The Evolvable Agent model is a Peer-to-Peer Evolutionary Algorithm [4] which focuses on distributed optimisation over Peer-to-Peer infrastructures [7]. The main idea of the model is that every agent (i.e. individual) is designated as a peer (i.e. network node) and adopts a decentralised population structure defined by the underlying Peer-to-Peer protocol newscast [3]. That way, the population structure acquires a small network diameter which allows a fast dissemination of the best solutions. Additionally, speed of propagation holds with scaling network sizes due to the logarithmic growth of the network diameter.

Keywords

Population Structure Evolutionary Algorithm Distribute Hash Table Network Diameter Content Addressable Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Norwell (1987)CrossRefGoogle Scholar
  2. 2.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’ 2005 special session on real parameter optimization. Journal of Heuristics 15(6), 617–644 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Technical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands (October 2002)Google Scholar
  4. 4.
    Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: Evag: A scalable peer-to-peer evolutionary algorithm. In: Genetic Programming and Evolvable Machines (2010)Google Scholar
  5. 5.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: ACM SIGCOMM, pp. 161–172 (2001)Google Scholar
  6. 6.
    Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms. Technical Report 2002004, University of Illinois at Urbana-Champaign, Urbana, IL (2001)Google Scholar
  7. 7.
    Steinmetz, R., Wehrle, K.: What is this peer-to-peer about? In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp. 9–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Natural Computing Series. Springer-Verlag New York, Inc., Secaucus (2005)MATHGoogle Scholar
  9. 9.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. L. J. Laredo
    • 1
  • J. J. Merelo
    • 1
  • C. M. Fernandes
    • 1
  • A. M. Mora
    • 1
  • M. G. Arenas
    • 1
  • P. A. Castillo
    • 1
  • P. Garcia-Sanchez
    • 1
  1. 1.Department of Architecture and Computer TechnologyUniversity of GranadaSpain

Personalised recommendations