Skip to main content

Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Abstract

In spite of the success of evolutionary algorithms for dealing with multi-objective optimization problems (the so-called multi-objective evolutionary algorithms (MOEAs)), their main drawback is the fine-tuning of their parameters, which is normally done in an empirical way (using a trial-and-error process for each problem at hand), and usually has a significant impact on their performance. In this paper, we present a self-adaptation methodology that can be incorporated into any MOEA, in order to allow an automatic fine-tuning of parameters, without any human intervention. In order to validate the proposed mechanism, we incorporate it into the NSGA-II, which is a well-known elitist MOEA and we analyze the performance of the resulting approach. The results reported here indicate that the proposed approach is a viable alternative to self-adapt the parameters of a MOEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  2. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Springer, Berlin (2007) ISBN 978-3-540-69431-1

    MATH  Google Scholar 

  3. Abbass, H.A.: The Self-Adaptive Pareto Differential Evolution Algorithm. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 831–836. IEEE Service Center, Piscataway (2002)

    Google Scholar 

  4. Toscano Pulido, G., Coello Coello, C.A.: The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Trautmann, H., Ligges, U., Mehnen, J., Preuß, M.: A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 825–836. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  8. Büche, D., Guidati, G., Stoll, P., Koumoutsakos, P.: Self-Organizing Maps for Pareto Optimization of Airfoils. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 122–131. Springer, Heidelberg (2002)

    Google Scholar 

  9. Tan, K., Lee, T., Khor, E.: Evolutionary Algorithms with Dynamic Population Size and Local Exploration for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 5(6), 565–588 (2001)

    Article  Google Scholar 

  10. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

  11. Kumar, R., Rockett, P.: Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm. Evolutionary Computation 10(3), 283–314 (2002)

    Article  Google Scholar 

  12. Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto-frontier Differential Evolution Approach for Multi-objective Optimization Problems. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC 2001), vol. 2, pp. 971–978. IEEE Service Center, Piscataway (2001)

    Google Scholar 

  13. Zhu, Z.Y., Leung, K.S.: Asynchronous Self-Adjustable Island Genetic Algorithm for Multi-Objective Optimization Problems. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 837–842. IEEE Service Center, Piscataway (2002)

    Google Scholar 

  14. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Martí, L., García, J., Berlanga, A., Molina, J.M.: A Cumulative Evidential Stopping Criterion for Multiobjective Optimization Evolutionary Algorithms. In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), vol. 1. ACM Press, London (2007)

    Google Scholar 

  16. Zielinski, K., Laur, R.: Adaptive Parameter Setting for a Multi-Objective Particle Swarm Optimization Algorithm. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3019–3026. IEEE Press, Singapore (2007)

    Chapter  Google Scholar 

  17. Myers, R.H., Montgomery, D.C.: Response Surface Methodology-Process and Product Optimization Using Designed Experiments. John Wiley and Sons, Chichester (2002)

    MATH  Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  19. Lindman, H.R.: Analysis of variance in complex experimental designs. SIAM Rev. 18(1), 134–137 (1976)

    Article  Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  21. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)

    Chapter  Google Scholar 

  22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  23. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

  24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)

    MATH  Google Scholar 

  25. Deb, K., Agrawal, R.B.: Simulated Binary Crossover for Continuous Search Space. Complex Systems 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  27. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers, San Mateo (1989)

    Google Scholar 

  28. Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)

    MATH  Google Scholar 

  29. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  31. Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation 13(2), 284–302 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zapotecas Martínez, S., Yáñez Oropeza, E.G., Coello Coello, C.A. (2011). Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics