Skip to main content

Generalising Algorithm Performance in Instance Space: A Timetabling Case Study

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6683)

Abstract

The ability to visualise how algorithm performance varies across the feature space of possible instance, both real and synthetic, is critical to algorithm selection. Generalising algorithm performance, based on learning from a subset of instances, creates a “footprint” in instance space. This paper shows how self-organising maps can be used to visualise the footprint of algorithm performance, and illustrates the approach using a case study from university course timetabling. The properties of the timetabling instances, viewed from this instance space, are revealing of the differences between the instance generation methods, and the suitability of different algorithms.

Keywords

  • Algorithm Selection
  • Timetabling
  • Hardness Prediction
  • Phase Transition
  • Combinatorial optimisation
  • Instance Difficulty

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25566-3_41
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-25566-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill, R., Reilly, C.: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science, 302–317 (2000)

    Google Scholar 

  2. Corne, D., Reynolds, A.: Optimisation and Generalisation: Footprints in Instance Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)

    Google Scholar 

  3. Smith-Miles, K., van Hemert, J., Lim, X.: Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  4. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing 22(1), 120–130 (2010)

    CrossRef  MATH  Google Scholar 

  5. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: Decomposition, reformulation, and diving in university course timetabling. Computers & Operations Research 37(3), 582–597 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch problems, under review (2011)

    Google Scholar 

  7. Gaspero, L.D., McCollum, B., Schaerf, A.: The second international timetabling competition (itc-2007): Curriculum-based course timetabling (track 3). Technical report, DIEGM, University of Udine (2007)

    Google Scholar 

  8. Rice, J.: The Algorithm Selection Problem. Advances in Computers 15, 65–117 (1976)

    CrossRef  Google Scholar 

  9. Lopes, L., Smith-Miles, K.: Pitfalls in Instance Generation for Udine Timetabling. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 299–302. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  10. Müller, T.: Itc2007 solver description: A hybrid approach. In: Proceedings of the Seventh PATAT Conference (2008)

    Google Scholar 

  11. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–284 (1996)

    Google Scholar 

  12. Beyrouthy, C., Burke, E., Landa-Silva, D., McCollum, B., McMullan, P., Parkes, A.: Threshold effects in the teaching space allocation problem with splitting. European Journal of Operational Research (EJOR) (2008) (under review)

    Google Scholar 

  13. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning Table of Contents, pp. 743–750. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  14. Wood, D.: An algorithm for finding a maximum clique in a graph. Operations Research Letters 21(5), 211–217 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. SOMine, V.: Eudaptics software Gmbh

    Google Scholar 

  17. Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. In: Soft Computing Systems: Design, Management and Applications, pp. 271–279 (2002)

    Google Scholar 

  18. Bierwirth, C., Mattfeld, D., Watson, J.: Landscape regularity and random walks for the job-shop scheduling problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  19. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith-Miles, K., Lopes, L. (2011). Generalising Algorithm Performance in Instance Space: A Timetabling Case Study. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)