Hill, R., Reilly, C.: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science, 302–317 (2000)
Google Scholar
Corne, D., Reynolds, A.: Optimisation and Generalisation: Footprints in Instance Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)
Google Scholar
Smith-Miles, K., van Hemert, J., Lim, X.: Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)
CrossRef
Google Scholar
McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing 22(1), 120–130 (2010)
CrossRef
MATH
Google Scholar
Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: Decomposition, reformulation, and diving in university course timetabling. Computers & Operations Research 37(3), 582–597 (2010)
MathSciNet
CrossRef
MATH
Google Scholar
Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch problems, under review (2011)
Google Scholar
Gaspero, L.D., McCollum, B., Schaerf, A.: The second international timetabling competition (itc-2007): Curriculum-based course timetabling (track 3). Technical report, DIEGM, University of Udine (2007)
Google Scholar
Rice, J.: The Algorithm Selection Problem. Advances in Computers 15, 65–117 (1976)
CrossRef
Google Scholar
Lopes, L., Smith-Miles, K.: Pitfalls in Instance Generation for Udine Timetabling. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 299–302. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Müller, T.: Itc2007 solver description: A hybrid approach. In: Proceedings of the Seventh PATAT Conference (2008)
Google Scholar
Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–284 (1996)
Google Scholar
Beyrouthy, C., Burke, E., Landa-Silva, D., McCollum, B., McMullan, P., Parkes, A.: Threshold effects in the teaching space allocation problem with splitting. European Journal of Operational Research (EJOR) (2008) (under review)
Google Scholar
Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various learning algorithms. In: Proceedings of the Seventeenth International Conference on Machine Learning Table of Contents, pp. 743–750. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Google Scholar
Wood, D.: An algorithm for finding a maximum clique in a graph. Operations Research Letters 21(5), 211–217 (1997)
MathSciNet
CrossRef
MATH
Google Scholar
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)
MathSciNet
CrossRef
MATH
Google Scholar
SOMine, V.: Eudaptics software Gmbh
Google Scholar
Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. In: Soft Computing Systems: Design, Management and Applications, pp. 271–279 (2002)
Google Scholar
Bierwirth, C., Mattfeld, D., Watson, J.: Landscape regularity and random walks for the job-shop scheduling problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)
CrossRef
Google Scholar
Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)
CrossRef
MATH
Google Scholar