Advertisement

On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

  • Sébastien Verel
  • Arnaud Liefooghe
  • Jérémie Humeau
  • Laetitia Jourdan
  • Clarisse Dhaenens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization. Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, ideally a representative sample of efficient solutions. In this paper, we propose the biobjective long and multiple path problems. We show experimentally that, on the first problem, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problem, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of multiobjective local search algorithms. This work opens new discussions on a proper definition of multiobjective fitness landscapes.

Keywords

Local Search Problem Instance Pareto Front Objective Space Local Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Rudolph, G.: How mutation and selection solve long path problems in polynomial expected time. Evolutionary Computation 4(2), 195–205 (1996)CrossRefGoogle Scholar
  3. 3.
    Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple objective combinatorial optimization. Technical Report 102/2006, University of Kaiserslautern, Department of Mathematics (2006)Google Scholar
  4. 4.
    Ehrgott, M., Klamroth, K.: Connectedness of efficient solutions in multiple criteria combinatorial optimization. European Journal of Operational Research 97(1), 159–166 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis. In: Multiobjective Programming and Goal Programming. LNEMS, vol. 618, pp. 69–77. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Metaheuristics for Multiobjective Optimisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  8. 8.
    Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing: an International Journal 3(1), 37–51 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar
  10. 10.
    Serafini, P.: Some considerations about computational complexity for multiobjective combinatorial problems. In: Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294. Springer, Heidelberg (1986)Google Scholar
  11. 11.
    Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Horoba, C., Neumann, F.: Additive approximations of pareto-optimal sets by evolutionary multi-objective algorithms. In: Tenth Workshop on Foundations of Genetic Algorithms (FOGA 2009), pp. 79–86. ACM, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation 14(1), 58–79 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sébastien Verel
    • 1
    • 2
  • Arnaud Liefooghe
    • 1
    • 3
  • Jérémie Humeau
    • 1
    • 4
  • Laetitia Jourdan
    • 1
  • Clarisse Dhaenens
    • 1
    • 3
  1. 1.INRIA Lille-Nord EuropeFrance
  2. 2.I3S – CNRSUniversité Nice Sophia AntipolisFrance
  3. 3.LIFL – CNRSUniversité Lille 1France
  4. 4.IA departmentÉcole des Mines de DouaiFrance

Personalised recommendations