Advertisement

A Genetic Algorithm Hybridized with the Discrete Lagrangian Method for Trap Escaping

  • Madalina Raschip
  • Cornelius Croitoru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6683)

Abstract

This paper introduces a genetic algorithm enhanced with a trap escaping strategy derived from the dual information presented as discrete Lagrange multipliers. When the genetic algorithm is trapped into a local optima, the Discrete Lagrange Multiplier method is called for the best individual found. The information provided by the Lagrangian method is unified, in the form of recombination, with the one from the last population of the genetic algorithm. Then the genetic algorithm is restarted with this new improved configuration. The proposed algorithm is tested on the winner determination problem. Experiments are conducted using instances generated with the combinatorial auction test suite system. The results show that the method is viable.

Keywords

Genetic Algorithm Local Optimum Constraint Satisfaction Problem Dual Solution Combinatorial Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mahfoud, S.: Niching methods for genetic algorithms. University of Illinois at Urbana-Champaign (1996)Google Scholar
  2. 2.
    Starkweather, T., Whitley, D., Mathias, K.: Optimization using distributed genetic algorithms. In: Schwefel, H.P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 176–185. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Cobb, H.G., Grefenstette, J.F.: Genetic algorithms for tracking changing environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 523–530 (1993)Google Scholar
  4. 4.
    Fukunaga, A.S.: Restart scheduling for genetic algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 357–366. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24(1/2), 67–100 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Raidl, G.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Raidl, G., Puchinger, J.: Combining (Integer) Linear Programming Techniques and Metaheuristics for Combinatorial Optimization. In: Hybrid Metaheuristics, An Emerging Approach to Optimization. SCI, vol. 114, pp. 31–62 (2008)Google Scholar
  8. 8.
    Pfeiffer, J., Rothlauf, F.: Analysis of Greedy Heuristics and Weight-Coded EAs for Multidimensional Knapsack Problems and Multi-Unit Combinatorial Auctions. In: Proceedings of the 9th Conference on Genetic and Evolutionary Computation, p. 1529 (2007)Google Scholar
  9. 9.
    Hansen, P., Brimberg, J., Mladenović, N., Urosević, D.: Primal-dual variable neighbourhood search for the simple plant location problem. INFORMS Journal on Computing 19(4), 552–564 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Raschip, M., Croitoru, C.: A New Primal-Dual Genetic Algorithm: Case Study for the Winner Determination Problem. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 252–263. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Leitner, M., Raidl, G.: Lagrangian Decomposition, Metaheuristics, and Hybrid Approaches for the Design of the Last Mile in Fiber Optic Networks. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 158–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    de Vries, S., Vohra, R.: Combinatorial auctions: A survey. INFORMS Journal on Computing 15(3), 284–309 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rassenti, S.J., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for airport time slot allocation. Bell J. of Economics 13, 402–417 (1982)CrossRefGoogle Scholar
  14. 14.
    Rothkopf, M., Pekec, A., Harstad, R.: Computationally manageable combinatorial auctions. Management Science 44(8), 1131–1147 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wah, B.W., Chen, Y.X.: Constrained genetic algorithms and their applications in nonlinear constrained optimization. In: Evolutionary Optimization. International Series in Operations Research and Management Science, vol. 48(IV), pp. 253–275 (2003)Google Scholar
  16. 16.
    Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the International Joint Conferences on Artifficial Intelligence, pp. 1102–1108 (2001)Google Scholar
  17. 17.
    Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proceedings of the ACM Conference on Electronic Commerce, pp. 1–12 (2000)Google Scholar
  18. 18.
    Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: Proceedings of the 17th National Conference on Artifficial Intelligence, pp. 22–29 (2000)Google Scholar
  19. 19.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers and Operations Research 33(8), 2179–2188 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner determination problem. Soft Computing 13(8-9), 905–917 (2009)CrossRefGoogle Scholar
  21. 21.
    Guo, Y., Lim, A., Rodrigues, B., Tang, J.: Using a Lagrangian Heuristic for a Combinatorial Auction Problem. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, pp. 99–103 (2005)Google Scholar
  22. 22.
    Shang, Y., Wah, B.: A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems. Journal of Global Optimization 12, 61–99 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for Combinatorial Auction Algorithms. In: Proceedings of the ACM Conference on Electronic Commerce, pp. 66–76 (2000)Google Scholar
  24. 24.
    Berkelaar, M.: ”lp_solve - version 5.5”, Eindhoven University of Technology, http://sourceforge.net/projects/lpsolve/
  25. 25.
    Zurel, E., Nisan, N.: An Efficient Approximate Allocation Algorithm for Combinatorial Auctions. In: Proceedings of the ACM Conference on Electronic Commerce, pp. 125–136 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Madalina Raschip
    • 1
  • Cornelius Croitoru
    • 1
  1. 1.“Al.I.Cuza” University of IasiRomania

Personalised recommendations