Distributed Signcryption from Pairings

  • Indivar Gupta
  • P. K. Saxena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7093)


The distributed signcryption scheme was proposed by Mu and Varadharajan in their paper presented at INDOCRYPT 2000. Since then some more schemes have been proposed for distributed signcryption and extended for group signcryption.

In 2007, Li et al [15] proposed signcryption scheme with key privacy. In this paper, we extend this scheme and propose a scheme for distributed signcryption based on pairings. Further, we extend distributed signcryption protocol to group signcryption. Finally, the security analysis of the protocols has been carried out based on difficulty of Diffie-Hellman problem in Gap Diffie-Hellman groups.


Random Oracle Security Parameter Probabilistic Polynomial Time Pairing Computation Signcryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bao, H., Cao, Z., Qian, H.: On the Security of a Group Signcryption Scheme from Distributed Signcryption Scheme. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 26–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: Proceedings of the First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  5. 5.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic curves in cryptography. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Frey, G., Müller, M., Rück, H.G.: The Tate Pairing and Discrete Logarithm Applied to Elliptic Curve Cryptosystems. IEEE Trans. of Information Theory 45(5), 1717–1719 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gupta, I., Pillai, N.R., Saxena, P.K.: Distributed Signcryption Scheme on Hyperelliptic Curve. In: Proceedings of the Fourth IASTED International Conference on Communication, Network and Information security: CNIS 2007, pp. 33–39. Acta Press, Calgary (2007)Google Scholar
  11. 11.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in Cryptographic Groups. Journal of cryptology 16(4), 239–247 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kwak, D.J., Moon, S.J.: Efficient Distributed Signcryption Scheme as Group Signcryption. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 403–417. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Kwak, D., Moon, S., Wang, G., Deng, R.H.: A Secure Extension of the Kwak-Moon Group Signcryption Scheme. Computer & Security 25, 435–444 (2006)CrossRefGoogle Scholar
  15. 15.
    Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.S.M.: An Efficient Signcryption Scheme with Key Privacy. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 78–93. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Libert, B., Quisquater, J.-J.: Efficient Signcryption with Key Privacy from Gap Diffie-Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Libert, B.: New Secure Applications of Bilinear Maps in Cryptography. PhD Thesis, Microelectronics Laboratory Laboratory, Université Catholique de Louvain (January 2006)Google Scholar
  18. 18.
    Miller, V.S.: The Weil Pairing and Its Efficient Calculation. Journal of Cryptology 17, 235–261 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mu, Y., Varadharajan, V.: Distributed Signcryption. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 155–164. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Tan, C.-H.: Analysis of Improved Signcryption Scheme with Key Privacy. Information Processing Letter 99(4), 135–138 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang, G., Wong, D.S., Deng, X.: Analysis and Improvement of a Signcryption Scheme with Key Privacy. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 218–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) < < Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Indivar Gupta
    • 1
  • P. K. Saxena
    • 1
  1. 1.SAG, DRDODelhiIndia

Personalised recommendations