Advertisement

Isotopic Microanalysis: In Situ Constraints on the Origin and Evolution of the Finnish Precambrian

  • O. Tapani RämöEmail author
Chapter
Part of the Lecture Notes in Earth Sciences book series (LNESS, volume 137)

Abstract

In situ isotope geochemical methods based on secondary ion mass spectrometry and laser ablation inductively coupled mass spectrometry have revolutionized research of geological materials. Accurate and precise information of several isotope systems can now be swiftly acquired from 5 μm to 50 μm diameter spots of minerals, and these data allow a detailed scrutiny of intra-crystal variation of geochronologic and isotopic tracers. Overall, in situ isotope data have added a new dimension to the study of the Earth’s lithosphere through time and geochemical modeling as a whole. The most important gain from in situ methods, compared to conventional isotope analyses, is that they allow extraction of information from separate domains of individual, microscopic crystals. These methods have been applied to the study of the Finnish Precambrian since 1991. The research published thus far has mainly utilized the geochronologic U-Pb method on the mineral zircon, but also tracer isotopes such as hafnium and oxygen in zircon and boron in tourmaline are becoming important. The studies have revealed important new concepts and many unexpected details from the almost 4 billion years of geological history registered by the Finnish bedrock, and will most probably continue to do so for many years in the future.

Keywords

Thermal Ionization Mass Spectrometry Quartz Diorite Schist Belt Boron Isotope Rapakivi Granite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahtonen N, Hölttä P, Huhma H (2007) Intracratonic Palaeoproterozoic granitoids in northern Finland: prolonged and episodic crustal melting events revealed by Nd isotopes and U-Pb ages on zircon. Bull Geol Soc Finland 79:143–174Google Scholar
  2. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270CrossRefGoogle Scholar
  3. Bergman S, Högdahl K, Nironen M, Ogenhall E, Sjöström H, Lundqvist L, Lahtinen R (2008) Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield: evidence from detrital zircon in metasandstone. Precambrian Res 161:231–249CrossRefGoogle Scholar
  4. Blichert-Toft J, Albaréde F (1997) The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  5. Bouvier A, Vervoort J, Patchett JP (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57CrossRefGoogle Scholar
  6. Claesson S, Huhma H, Kinny PD, Williams IS (1993) Svecofennian detrital zircon ages – implications for the Precambrian evolution of the Baltic Shield. Precambrian Res 64:109–130CrossRefGoogle Scholar
  7. Clement SWJ, Compston W, Newstead G (1977) Design of a large, high resolution ion microprobe. Proceedings of the international secondary ion mass spectrometry conference–, Springer-Verlag, Berlin, pp 12–17Google Scholar
  8. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:155–134CrossRefGoogle Scholar
  9. Ehlers C, Lindroos A, Selonen O (1993) The late Svecofennian granite-migmatite zone of southern Finland – a belt of transpressive deformation and granite emplacement. Precambrian Res 64:295–309CrossRefGoogle Scholar
  10. Faure G, Mensing TM (2005) Isotopes – principles and applications, 3rd edn. Wiley, New JerseyGoogle Scholar
  11. Hanski E, Huhma H, Perttunen V (2005) SIMS U-Pb, Sm-Nd isotope and geochemical study of an arkosite-amphibolite suite, Peräpohja Schist Belt: evidence for ca. 1.98 Ga A-type felsic magmatism in northern Finland. Bull Geol Soc Finland 77:5–29Google Scholar
  12. Hanski E, Huhma H, Vuollo J (2010) SIMS zircon ages and Nd isotope systematics of the 2.2 Ga mafic intrusions in northern and eastern Finland. Bull Geol Soc Finland 82:31–62Google Scholar
  13. Heilimo E, Halla J, Huhma H (2011) Single-grain zircon U-Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province. Lithos 121:87–99CrossRefGoogle Scholar
  14. Heinonen AP, Andersen T, Rämö OT (2010) Re-evaluation of rapakivi petrogenesis: source contrains from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland. J Petrol 51:1687–1709CrossRefGoogle Scholar
  15. Hölttä P, Huhma H, Mänttäri I, Paavola J (2000a) P-T-t development of Archaean granulites in Varpaisjärvi, central Finland. II. Dating of high-grade metamorphism with the U-Pb and Sm-Nd methods. Lithos 50:121–136CrossRefGoogle Scholar
  16. Hölttä P, Huhma H, Mänttäri I, Peltonen P, Juhanoja J (2000b) Petrology and geochemistry of mafic granulite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 51:109–133CrossRefGoogle Scholar
  17. Hölttä P, Balagansky V, Garde AA, Mertanen S, Peltonen P, Slabunov A, Sorjonen-Ward P, Whitehouse M (2008) Archean of Greenland and Fennoscandia. Episodes 31:13–19Google Scholar
  18. Huhma H (1986) Sm-Nd, U-Pb and Pb-Pb isotopic evidence for the origin of the early Proterozoic Svecokarelian crust in Finland. Geol Surv Finland Bull 337:1–48Google Scholar
  19. Huhma H, Claesson S, Kinny PD, Williams IS (1991) The growth of early Proterozoic crust: new evidence from Svecofennian detrital zircons. Terra Nova 3:175–178CrossRefGoogle Scholar
  20. Huhma H, Meriläinen K (1991) Provenance of paragneisses from Lapland granulite belt. In: Tuisku P, Laajoki K (eds) Metamorphism, deformation and structure of the crust. Joint Meeting of IGCP Projects 275, Deep Geology of the Baltic/Fennoscandian Shield, and 304, Lower Crustal Processes, Oulu, Finland, August 1991, Abstracts. Res Terrae, Serie A, Nr. 5, p.26Google Scholar
  21. Huhma H, O’Brien H, Lahaye Y, Mänttäri I (2011) Isotope geology and Fennoscandian lithosphere evolution. In: Nenonen K, Nurmi P (eds) Geoscience for society 125th anniversary volume. Geol Surv Finland Spec Paper 49:35–48Google Scholar
  22. Käpyaho A, Hölttä P, Whitehouse MJ (2007) U-Pb zircon geochronology of selected Archaean migmatites in eastern Finland. Bull Geol Soc Finland 79:95–115Google Scholar
  23. Käpyaho A, Mänttäri I, Huhma H (2006) Growth of Archaean crust in the Kuhmo district, eastern Finland: U-Pb and Sm-Nd isotope constraints on plutonic rocks. Precambrian Res 146:95–119CrossRefGoogle Scholar
  24. Kontinen A (1987) An early Proterozoic ophiolite – the Jormua mafic–ultramafic complex, northeastern Finland. In: Gaál G, Gorbatschev R (eds) Precambrian geology and evolution of the central Baltic Shield. Precambrian Res 35:313–341Google Scholar
  25. Kontinen A, Käpyaho A, Huhma H, Karhu J, Matukov DI, Larionov AS, Sergei A (2007) Nurmes paragneisses in eastern Finland, Karelian craton: provenance, tectonic setting and implications for Neoarchaean craton correlation. Precambrian Res 152:119–148CrossRefGoogle Scholar
  26. Korsman K, Korja T, Pajunen M, Virransalo P, GGT/SVEKA Working Group (1999) The GGT/SVEKA Transect: structure and evolution of the continental crust in the Paleoproterozoic Svecofennian orogen in Finland. Int Geol Rev 41:287–333CrossRefGoogle Scholar
  27. Kouvo O (1958) Radioactive age of some Finnish pre-cambrian minerals. Bull Comm Géol Finlande 182:1–70Google Scholar
  28. Kouvo O, Tilton GR (1966) Mineral ages from the Finnish Precambrian. J Geol 74:421–442CrossRefGoogle Scholar
  29. Kurhila M, Vaasjoki M, Mänttäri I, Rämö OT, Nironen M (2005) U-Pb ages and Nd isotope characteristics of the lateorogenic, migmatizing microcline granites in southwestern Finland. Bull Geol Soc Finland 77:105–128Google Scholar
  30. Kurhila M, Andersen T, Rämö OT (2010) Diverse sources of crustal granitic magma: Lu-Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland. Lithos 115:263–271CrossRefGoogle Scholar
  31. Kurhila M, Mänttäri I, Vaasjoki M, Rämö OT, Nironen M (2011) U-Pb geochrological constraints of the late Svecofennian leucogranites of southern Finland. Precambrian Res 190:1–24CrossRefGoogle Scholar
  32. Laajoki K, Huhma H (2006) Detrital zircon dating of the Palaeoproterozoic Himmerkinlahti Member, Posio, northern Finland; lithostratigraphic implications. Bull Geol Soc Finland 78:177–182Google Scholar
  33. Lahtinen R, Huhma H (1997) Isotopic and geochemical constraints on the evolution of the 1.93–1.79 Ga Svecofennian crust and mantle. Precambrian Res 82:13–34CrossRefGoogle Scholar
  34. Lahtinen R, Huhma H, Kousa J (2002) Contrasting source components of the Paleoproterozoic Svecofennian metasediments: detrital zircon U-Pb, Sm-Nd and geochemical data. Precambrian Res 116:81–109CrossRefGoogle Scholar
  35. Lahtinen R, Korja A, Nironen M (2005) Palaeoproterozoic tectonic evolution of the Fennoscandian Shield. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland: key to the evolution of the Fennoscandian Shield, vol 14, Developments in Precambrian Geology. Elsevier, Amsterdam, pp 418–532Google Scholar
  36. Lahtinen R, Huhma H, Kähkönen Y, Mänttäri I (2009) Paleoproterozoic sediment recycling during multiphase orogenic evolution in Fennoscandia, the Tampere and Pirkanmaa belts, Finland. Precambrian Res 174:310–336CrossRefGoogle Scholar
  37. Lahtinen R, Huhma H, Kontinen A, Kohonen J, Sorjonen-Ward P (2010) New constraints for the source characteristics, deposition and age of the 2. 1–1. 9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Res 176:77–93CrossRefGoogle Scholar
  38. Lauri LS, Andersen T, Hölttä P, Huhma H, Graham S (2011) Evolution of the Archaean Karelian Province in the Fennoscandian Shield in the light of U-Pb zircon ages and Sm-Nd and Lu–Hf isotope systematics. J Geol Soc London 168:201–218CrossRefGoogle Scholar
  39. Lehtinen M (1976) Lake Lappajärvi, a meteorite impact site in western Finland. Geol Surv Finland Bull 282:1–2Google Scholar
  40. Mänttäri I, Hölttä P (2002) U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi, central Finland: evidence for multiple metamorphism and Neoarchean terrane accretion. Precambrian Res 118:101–131CrossRefGoogle Scholar
  41. Mänttäri I, Koivisto M (2001) Ion microprobe uranium-lead dating of zircons from the Lappajärvi impact crater, western Finland. Meteor Planet Sci 36:1087–1095CrossRefGoogle Scholar
  42. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  43. Mikkola P, Kontinen A, Huhma H, Lahaye Y (2010) Three Paleoproterozoic A-type granite intrusions and associated dykes from Kainuu, east Finland. Bull Geol Soc Finland 82:81–100Google Scholar
  44. Mikkola P, Huhma H, Heilimo E, Whitehouse M (2011) Archean crustal evolution of the Suomussalmi district as part of the Kianta complex, Karelia; constraints from geochemistry and isotopes of granitoids. Lithos. doi: 10.1016/j.lithos.2011.02.012
  45. Mutanen T, Huhma H (2003) The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland. Bull Geol Soc Finland 75:51–68Google Scholar
  46. Nironen M (2003) Keski-Suomen granitoidikompleksi – kallioperäkartan selitys. Central Finland Granitoid Complex – Explanation to the bedrock map. Geol Surv Finland Rep Invest 157:1–45Google Scholar
  47. Nironen M (2005) Proterozoic orogenic granitoid rocks. In: Lehtinen M, Nurmi PA, Rämö O (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian shield. Developments in Precambrian geology, vol 14. Elsevier, Amsterda, pp 443–480CrossRefGoogle Scholar
  48. O’Brien HE, Tyni M (1999) Mineralogy and geochemistry of kimberlites and related rocks from Finland. In: Gurney JJ et al. (eds) Proceedings of the 7th international kimberlite conference, University of Cape Town, South Africa, 2, 625–636Google Scholar
  49. Pajunen M, Airo M-L, Elminen T, Mänttäri I, Niemelä R, Vaarma M, Wasenius P, Wennerström M (2008) Tectonic evolution of the Svecofennian crust in southern Finland. In: Pajunen M (ed) Tectonic evolution of the Svecofennian crust in southern Finland – a basis for characterizing bedrock technical properties. Geol Surv Finland Spec Pap 47:15–160Google Scholar
  50. Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297CrossRefGoogle Scholar
  51. Peltonen P, Mänttäri I, Huhma H, Kontinen A (2003) Archean zircons from the mantle: the Jormua ophiolite revisited. Geology 31:645–648CrossRefGoogle Scholar
  52. Peltonen P, Mänttäri I, Huhma H, Whitehouse MJ (2006) Multi-stage origin of the lower crust of the Karelian craton from 3.5 Ga to 1.7 Ga based on isotopic ages of kimberlite-derived mafic granulite xenoliths. Precambrian Res 147:107–123CrossRefGoogle Scholar
  53. Rämö OT, Haapala I (2005) Rapakivi granites. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian shield. Developments in Precambrian geology, vol 14. Elsevier, Amsterdam, pp 553–562Google Scholar
  54. Rämö OT, Vaasjoki M, Mänttäri I, Elliott BA, Nironen M (2001) Petrogenesis of the post-kinematic magmatism of the Central Finland Granitoid Complex I; radiogenic isotope constraints and implications for crustal evolution. J Petrol 42:1971–1993CrossRefGoogle Scholar
  55. Rutland RWR, Williams IS, Korsman K (2004) Pre-1.91 Ga deformation and metamorphism in the Palaeoproterozoic Vammala migmatite belt, southern Finland, and implications for Svecofennian tectonics. Bull Geol Soc Finland 76:93–140Google Scholar
  56. Saalmann K, Mänttäri I, Ruffet G, Whitehouse MJ (2009) Age and tectonic framework of structurally controlled Palaeoproterozoic gold mineralization in the Häme belt of southern Finland. Precambrian Res 174:53–77CrossRefGoogle Scholar
  57. Saalmann K, Mänttäri I, Peltonen P, Whitehouse MJ, Grönholm P, Talikka M (2010) Geochronology and structural relationships of mesothermal gold mineralization in the Palaeoproterozoic Jokisivu prospect, southern Finland. Geol Mag 147:551–569CrossRefGoogle Scholar
  58. Skyttä P, Mänttäri I (2008) Structural setting of late Svecofennian granites and pegmatites in Uusimaa Belt, SW Finland: age constraints and implications for crustal evolution. Precambrian Res 164:86–109CrossRefGoogle Scholar
  59. Skyttä P, Väisänen M, Mänttäri I (2006) Preservation of Palaeoproterozoic early Svecofennian structures in the Orijärvi area, SW Finland – evidence for polyphase strain partitioning. Precambrian Res 150:153–172CrossRefGoogle Scholar
  60. Talikka M, Vuori S (2010) Geochemical and boron isotopic compositions of tourmalines from selected gold-mineralized and barren rocks in SW Finland. Bull Geol Soc Finland 82:113–120Google Scholar
  61. Torvela T, Mänttäri I, Hermansson T (2008) Timing of deformation phases within the South Finland shear zone, SW Finland. Precambrian Res 160:277–298CrossRefGoogle Scholar
  62. Tuisku P, Huhma H (2006) Evolution of migmatitic granulite complexes: implications from Lapland Granulite Belt, part II: isotopic dating. Bull Geol Soc Finland 78:143–175Google Scholar
  63. Vaasjoki M, Huhma H, Lahtinen R, Vestin J (2003) Sources of Svecofennian granitoids in the light of ion probe U-Pb measurements on their zircons. Precambrian Res 121:251–262CrossRefGoogle Scholar
  64. Väisänen M, Kirkland CL (2008) U-Th-Pb zircon geochronology on igneous rocks in the Toija and Salittu Formations, Orijärvi area, southwestern Finland: constraints on the age of volcanism and metamorphism. Bull Geol Soc Finland 80:73–87Google Scholar
  65. Väisänen M, Mänttäri I, Hölttä P (2002) Svecofennian magmatic and metamorphic evolution in southwestern Finland as revealed by U-Pb zircon SIMS geochronology. Precambrian Res 116:111–127CrossRefGoogle Scholar
  66. Wetherill G, Kouvo O, Tilton G, Gast P (1962) Age measurements of rocks from the Finnish Precambrian. J Geol 70:74–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations