Skip to main content

Craton Mantle Formation and Structure of Eastern Finland Mantle: Evidence from Kimberlite-Derived Mantle Xenoliths, Xenocrysts and Diamonds

  • Chapter
  • First Online:
Book cover From the Earth's Core to Outer Space

Part of the book series: Lecture Notes in Earth Sciences ((LNESS,volume 137))

Abstract

The mantle that underlies Archean cratons is a poorly understood fundamental feature of Earth; consequently its genesis is an active topic of discussion and research. This ancient mantle has several unique characteristics, including low density relative to average mantle, concomitant melt-depleted compositions, highly magnesian olivine and consequently high seismic velocities. The buoyancy and rigidity of this type of mantle has allowed Archean lithosphere to remain stable and “float” in a way that keeps it mostly from being reworked back into the convecting mantle. The Karelian craton is one such ancient block of coupled crust and mantle that has survived since at least 3.5 Ga. Kimberlites and lamproites intruded into this region have carried fragments of the mantle and crust to the surface, providing unique information on the composition and structure of the lithosphere down to 250 km below the Earth’s surface. Due to the value of diamond, companies have undertaken exploration all over the world and provided materials for study of this otherwise inaccessible part of our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arndt N, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109:61–71

    Article  Google Scholar 

  • Beyer EE, Griffin WL, O’Reilly SY (2006) Transformation of Archean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region, Norway. J Petrol 47:1611–1636

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from NW Canada. Contrib Mineral Petrol 134:3–16

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Boyet M, Carlson RW (2005) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    Article  Google Scholar 

  • Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras area, slave craton: composition, structure and origin. J Petrol 40:705–727

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol 50:115–1204

    Article  Google Scholar 

  • Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB (2010) Diamonds through time. Econ Geol 105:689–712

    Article  Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Phil Trans R Soc A 366:4163–4181

    Article  Google Scholar 

  • Hölttä P, Balagansky V, Garde A, Mertanen S, Peltonen P, Slabunov A, Sorjonen-Ward P, Whitehouse M (2008) Archean of Greenland and Fennoscandia. Episodes 31(1):13–19

    Google Scholar 

  • Ito E, Kubo A, Katsura T, Walter MJ (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys Earth Planet Inter 143–144:397–406

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the a-phase, b-phase and c-phase of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Kukkonen IT, Peltonen P (1999) Xenolith-controlled geotherm for the central Fennoscandian shield: implications for lithosphere-asthenosphere relations. Tectonophysics 304:301–315

    Article  Google Scholar 

  • Le Roux V, Bodinier J-L, Tommasi A, Alard O, Dautria J-M, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Lee C-TA (2006) Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments, American geophysical union monograph. AGU, Washington, pp 89–114

    Chapter  Google Scholar 

  • Lehtonen ML, O’Brien HE (2009) Mantle transect of the Karelian Craton from margin to core based on P-T data from garnet and clinopyroxene xenocrysts in kimberlites. Bull Geol Soc Finland 81:79–102

    Google Scholar 

  • Malkovets VG, Griffin WL, O’Reilly SY, Wood BJ (2007) Diamond, subcalcic garnet and mantle metasomatism: kimberlite sampling patterns define the link. Geology 35:339–342

    Article  Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum, New York

    Book  Google Scholar 

  • Mutanen T, Huhma H (2003) The 3.5 Ga Siurua trondhjemite gneiss in the Archean Pudasjärvi Granulite Belt, northern Finland. Bull Geol Soc Finland 75:51–68

    Google Scholar 

  • Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136

    Article  Google Scholar 

  • O’Brien HE, Bradley J (2008) New kimberlite discoveries in Kuusamo, northern Finland. 9th International kimberlite conference, Frankfurt, Germany. Extended Abstract 00346

    Google Scholar 

  • O’Brien HE, Tyni M (1999) Mineralogy and geochemistry of kimberlites and related rocks from Finland. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, vol 2. University of Cape Town, Cape Town, pp 625–636

    Google Scholar 

  • O’Brien HE, Peltonen P, Vartiainen H (2005) Kimberlites, carbonatites and alkaline rocks. In: Lehtinen M, Nurmi P, Rämö OT (eds) Precambrian geology of Finland: key to the evolution of the Fennoscandian shield. Elsevier Science B.V, Amsterdam, pp 605–644

    Chapter  Google Scholar 

  • O’Brien HE, Phillips D, Spencer R (2007) Isotopic ages of Lentiira-Kuhmo-Kostomuksha olivine lamproite-Group II kimberlites. Bull Geol Soc Finland 79:203–215

    Google Scholar 

  • Parman SW, Grove TL, Dann JC, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. South African J Geol 107:107–118

    Article  Google Scholar 

  • Pearson DG (1999) The age of continental roots. Lithos 48:171–194

    Article  Google Scholar 

  • Pearson DG, Wittig N (2008) Formation of Archean continental lithosphere and its diamonds: the root of the problem. J Geol Soc London 165:1–20

    Article  Google Scholar 

  • Peltonen P, Brügmann G (2006) Origin of layered continental mantle (Karelian craton, Finland): geochemical and Re-Os isotope constraints. Lithos 89:405–423

    Article  Google Scholar 

  • Peltonen P, Mänttäri I, Huhma H, Whitehouse M (2006) Multi-stage origin of the lower crust of the Karelian craton from 3.5 to 1.7 Ga based on isotopic ages of kimberlite-derived mafic granulite xenoliths. Precambrian Res 147:107–123

    Article  Google Scholar 

  • Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202

    Article  Google Scholar 

  • Ryder G, Koeberl C, Mojzsis SJ (2000) Heavy bombardment on the Earth 3.85 Ga: the search for petrographic and geochemical evidence. In: Canup RM, Righter K (eds) Origin of the earth and moon. University of Arizona Press, Tucson, pp 475–492

    Google Scholar 

  • Sandoval S, Kissling E, Ansorge J, SVEKALAPKO Seismic Tomography Working Group (2004) High resolution body wave tomography beneath the SVEKALAPKO array: II. Anomalous upper mantle beneath the central Baltic shield. Geophys J Int 157:200–214

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMDeR (2003) Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423:68–70

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tyni M (1997) Diamond prospecting in Finland: a review. In: Papunen H (ed) Mineral deposits: research and exploration, Where do they meet? Proceedings of the 4th SGA meeting, Turku, Finland:. Balkema, Rotterdam, pp 789–791

    Google Scholar 

  • Volodichev OI, Slabunov AI, Bibikova EV, Konilov AN, Kuzenko TI (2004) Archean eclogites in the Belomorian Mobile belt, Baltic shield. Petrology 12:540–560

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Wittig N, Pearson DG, Webb M, Ottley CJ, Irvine GJ, Kopylova M, Jensen SM, Nowell GM (2008) Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet Sci Lett 274:24–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Brien, H., Lehtonen, M. (2012). Craton Mantle Formation and Structure of Eastern Finland Mantle: Evidence from Kimberlite-Derived Mantle Xenoliths, Xenocrysts and Diamonds. In: Haapala, I. (eds) From the Earth's Core to Outer Space. Lecture Notes in Earth Sciences, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25550-2_5

Download citation

Publish with us

Policies and ethics