Paleo-Mesoproterozoic Assemblages of Continents: Paleomagnetic Evidence for Near Equatorial Supercontinents

  • S. MertanenEmail author
  • L. J. Pesonen
Part of the Lecture Notes in Earth Sciences book series (LNESS, volume 137)


Various geological and geophysical evidence show that at least two supercontinents, Nuna and Rodinia existed during the Paleoproterozoic and Mesoproterozoic eras. In this paper we have used updated paleomagnetic and isotope age data during 2.45–1.04 Ga to define the amalgamation and breakup times of these supercontinents. The Nuna and Rodinia supercontinents were predominantly at moderate to low paleolatitudes except during the earliest Paleoproterozoic when some of the continents, notably India (Dharwar craton) and Australia (Yilgarn craton), occupied polar latitudes. Sedimentological indicators of paleoclimate are generally consistent with the paleomagnetic latitudes, with the exception of the Early Proterozoic, when low latitude glaciations took place on several continents. The new data suggest that the Nuna supercontinent started to form at about 1.8 Ga, but the final amalgamation took place as late as ca. 1.53 Ga. The orogenic belts formed within Nuna resulted from a complex set of collisions, rotations and strike slip faultings of the docking cratons. Notably, continuation of 1.8–1.5 Ga accretional belts from Laurentia to Baltica is supported by paleomagnetic data. However, the position of Amazonia in the Laurentia-Baltica unity is still controversal. The occurrence of coeval accretional belts in Amazonia and Baltica and the occurrence of ca. 1.53 Ga rapakivi intrusions in a belt from Baltica to Amazonia support their unity, but the strict paleomagnetic data keeps them separated at 1.53 Ga. Nuna began to break up after 1.2 Ga during several rifting episodes, followed by a short period of independent drift of most of the continents. The amalgamation of Rodinia took place during the period of 1.101.04 Ga when most of the Earth’s continents were fused together.


Paleomagnetic Data Dharwar Craton Rapakivi Granite Paleomagnetic Polis Yilgarn Craton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The new Precambrian paleomagnetic database used in this work would not be possible without the years lasting co-operation with David Evans (Yale University).


  1. Åhäll K-I, Larson SÅ (2000) Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield. Review addressing the tectonic characteristics of Svecofennian, TIB 1-related and Gothian events. Geol Fören Stockholm Förh 122:193–206Google Scholar
  2. Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee L, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285CrossRefGoogle Scholar
  3. Bindeman IN, Schmitt AK, Evans DAD (2010) Limits of hydrosphere-lithosphere interaction: origin of the lowest known δ18O silicate rock on Earth in the Paleoproterozoic Karelian rift. Geology 38:631–634CrossRefGoogle Scholar
  4. Bispo-Santos F, D’Agrella-Filho MS, Pacca IIG, Janikian L, Trindade RIF, Elming S-Å, Silva MAS, Pinho REC (2008) Columbia revisited: paleomagnetic results from the 1790 Ma Colider volcanic (SW Amazonian Craton, Brazil). Precambrian Res 164:40–49CrossRefGoogle Scholar
  5. Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134CrossRefGoogle Scholar
  6. Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms - time markers of crustal evolution. Balkema Publishers, Rotterdam, pp 1–24Google Scholar
  7. Buchan KL, Mertanen S, Park RG, Pesonen LJ, Elming S-Å, Abrahamsen N, Bylund G (2000) Comparing the drift of Laurentica and Baltica in the Proterozoic: the importance of key palaeomagnetic poles. Tectonophysics 319:167–198CrossRefGoogle Scholar
  8. Condie KC, Des Marais DJ, Abbot D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Res 106:239–260CrossRefGoogle Scholar
  9. Cordani UG, Teixeira W, DÁgrella-Filho MS, Trindade RI (2009) The position of the Amazon Craton in supercontinents. Gondwana Res 115:396–407CrossRefGoogle Scholar
  10. D’Agrella-Filho MS, Trindade RIF, Tohver E, Janikian L, Teixeira W, Hall C (2011) Paleomagnetism and 40Ar/39Ar geochronology of the highgrade metamorphic rocks of the Jequié block, São Francisco craton: Atlantica, Ur and beyond. Precambrian Res 185:183–201CrossRefGoogle Scholar
  11. Elming S-Å, D’Agrella-Filho MS, Page LM, Tohver E, Trindade RIF, Pacca IIG, Geraldes MC, Teixeira W (2009) A palaeomagnetic and 40Ar/39Ar study of Late Precambrian sills in the SW part of the Amazonian craton: Amazonia in the Rodinia reconstruction. Geophys J Int 178:106–122CrossRefGoogle Scholar
  12. Ernst R, Bleeker W (2010) Large Igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739CrossRefGoogle Scholar
  13. Ernst RE, Buchan KL, West TD, Palmer HC (1996) Diabase (dolerite) dyke swarms of the world: first edition. Geological Survey of Canada Open File 3241, Scale 1:35,000,000 map and report 104 pGoogle Scholar
  14. Evans ME (1968) Magnetization of dikes: a study of the paleomagnetism of the Widgiemooltha dike suite, western Australia. J Geophys Res 73:3261–3270CrossRefGoogle Scholar
  15. Evans DAD (2000) Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am J Sci 300:347–433CrossRefGoogle Scholar
  16. Evans DAD (2009) The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol Soc London Spec Publ 327:371–404CrossRefGoogle Scholar
  17. Evans DAD, Halls HC (2010) Restoring Proterozoic deformation within the Superior craton. Precambian Res 183:474–489CrossRefGoogle Scholar
  18. Eyles N (2008) Glacio-epochs and the supercontinent cycle after 3.0 Ga: tectonic boundary conditions for glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 258:898–129CrossRefGoogle Scholar
  19. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A217:295–305CrossRefGoogle Scholar
  20. Fitzsimons ICW (2000) Grenville-age basement provinces in east Antarctica: evidence for three separate collisional orogens. Geology 28:879–882CrossRefGoogle Scholar
  21. French JE, Heaman LM (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarns of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Res 183:416–441CrossRefGoogle Scholar
  22. Geraldes MC, Van Schmus WR, Condie KC, Bell S, Texeira W, Babinski M (2001) Proterozoic geologic evolution of the SW part of the Amazonian craton in Mato Grosso state, Brazil. Precambrian Res 111:91–128CrossRefGoogle Scholar
  23. Halls HC, Heaman LM (2000) The paleomagnetic significance of new U-Pb age data from the Molson dyke swarm, Cauchon Lake area, Manitoba. Can J Earth Sci 37:957–966CrossRefGoogle Scholar
  24. Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Res 155:47–68CrossRefGoogle Scholar
  25. Hoffman PF (1991) Did the breakout of Laurentia turn Gondwana inside out? Science 252:1409–1412CrossRefGoogle Scholar
  26. Hoffman PF (1997) Tectonic genealogy of north America. In: van der Pluijm BA, Marshak S (eds) Earth structure: an introduction to structural geology and tectonics. McGraw-Hill, New York, pp 459–464Google Scholar
  27. Johansson Å (2009) Baltica, Amazonia and the SAMBA connection – 1,000 million years of neighbourhood during the Proterozoic? Precambrian Res 175:221–234CrossRefGoogle Scholar
  28. Karlström KE, Åhäll K-I, Harlan SS, Williams ML, McLelland J, Geissman JW (2001) Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extension to Australia and Baltica, and implications for refining Rodinia. Precambrian Res 111:5–30CrossRefGoogle Scholar
  29. Klein R, Pesonen LJ, Mertanen S, Kujala H (2010) Paleomagnetuc study of Satakunta sandstone, Finland. In: Heikkinen P, Arhe K, Korja T, Lahtinen R, Pesonen LJ, Rämö T (eds) Lithosphere 2010 – Sixth symposium on the structure, composition and evolution of the lithosphere in Finland. Programme and Extended Abstracts, Helsinki, Finland, 27–28 Oct 2010. Institute of Seismology, University of Helsinki, Report S-55, pp 33–35Google Scholar
  30. Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi P, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian shield. Elsevier, Amsterdam, pp 481–532CrossRefGoogle Scholar
  31. Li ZX, Bogdanova SV, Collins AS, Davidson A, Waele BD, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210CrossRefGoogle Scholar
  32. Lubnina NV, Mertanen S, Söderlund U, Bogdanova S, Vasilieva TI, Frank-Kamenetsky D (2010) A new key pole for the east European craton at 1451 Ma: palaeomagnetic and geochronological constrains from mafic rocks in the lake Ladoga region (Russian Karelia). Precambrian Res 183:442–462CrossRefGoogle Scholar
  33. Marmo J, Ojakangas R (1984) Lower Proterozoic glaciogenic deposits, eastern Finland. Geol Soc Amer Bull 95:1055–1062CrossRefGoogle Scholar
  34. Marmo J, Kohonen J, Sarapää O, Äikäs O (1988) Sedimentology and stratigraphy of the lower Proterozoic Sariola and Jatuli Groups in the Koli-Kaltimo Area, eastern Finland. In: Sedimentology of the Precambrian formations in eastern and northern Finland: Proceedings of IGCP 160 Symposium at Oulu, 21–22 Jan 1986. Geological Survey Finland Special Paper 5, pp 11–28Google Scholar
  35. Maruyama S, Santosh M (2008) Models on Snowball Earth and Cambrian explosion: a synopsis. Gondwana Res 14:22–32CrossRefGoogle Scholar
  36. McMenamin MAS, McMenamin DL (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New YorkGoogle Scholar
  37. Meert JG (2002) Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Res 5:207–215CrossRefGoogle Scholar
  38. Mertanen S, Halls HC, Vuollo JI, Pesonen LJ, Stepanov VS (1999) Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian shield – implications for continental reconstructions. Precambrian Res 98:197–221CrossRefGoogle Scholar
  39. Neuvonen KJ, Korsman K, Kouvo O, Paavola J (1981) Paleomagnetism and age relations of the rocks in the main sulphide ore belt in central Finland. Bull Geol Soc Finland 53:109–133Google Scholar
  40. Nironen M (1997) The Svecofennian orogen: a tectonic model. Precambrian Res 86:21–44CrossRefGoogle Scholar
  41. Pesonen LJ, Evans DAD (2012) Paleomagnetic data compilation – Precambrian era (in prep.)Google Scholar
  42. Pesonen LJ, Neuvonen KJ (1981) Paleomagnetism of the Baltic shield – implications for Precambrian tectonics. In: Kröner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 623–648Google Scholar
  43. Pesonen LJ, Elming S-Å, Mertanen S, Pisarevsky S, D’Agrella-Filho MS, Meert JG, Schmidt PW, Abrahamsen N, Bylund G (2003) Palaeomagnetic configuration of continents during the Proterozoic. Tectonophysics 375:289–324CrossRefGoogle Scholar
  44. Pesonen LJ, O`Brien H, Piispa E, Mertanen S, Peltonen P (2005) Kimberlites and lamproites in continental reconstructions – implications for diamond prospecting. In: Secher K, Nielsen MN (eds) Extended abstracts of the workshop on Greenland’s diamond potential. Geological Survey of Denmark and Greenland, Ministry of the Environment, Copenhagen, pp 7–9Google Scholar
  45. Pesonen LJ, Mertanen S, Veikkolainen T (2012) Paleo-Mesoproterozoic supercontinent - a paleomagnetic view. Geophysica 48 (in print)Google Scholar
  46. Pisarevsky S, Bylund G (2010) Paleomagnetism of 1780–1770 Ma mafic and composite intrusions of Småland (Sweden): implications for the Mesoproterozoic supercontinent. Am J Sci 310:1168–1186CrossRefGoogle Scholar
  47. Pisarevsky SA, Natapov LM (2003) Siberia and Rodinia. Tectonophysics 375:221–245CrossRefGoogle Scholar
  48. Pisarevsky SA, Wingate MTD, Powell CMcA, Johnson S, Evans DAD (2003) Models of Rodinia assembly and fragmentation. Geol Soc London Spec Publ 206:35–55CrossRefGoogle Scholar
  49. Poorter RPE (1975) Palaeomagnetism of Precambrian rocks from southeast Norway and south Sweden. Phys Earth Planet Int 10:74–87CrossRefGoogle Scholar
  50. Rämö OT, Haapala I (1995) One hundred years of rapakivi granite. Miner Petrol 52:129–185CrossRefGoogle Scholar
  51. Reddy SM, Evans DAD (2009) Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere. Geol Soc London Spec Publ 323:1–26CrossRefGoogle Scholar
  52. Roest WR, Srivistava SP (1989) Sea-floor spreading in the Labrador Sea: a new reconstruction. Geology 17:1000–1003CrossRefGoogle Scholar
  53. Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22CrossRefGoogle Scholar
  54. Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368CrossRefGoogle Scholar
  55. Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, OxfordGoogle Scholar
  56. Salminen J, Pesonen LJ (2007) Paleomagnetic and rock magnetic study of the Mesoproterozoic sill, Valaam island, Russian Karelia. Precambrian Res 159:212–230CrossRefGoogle Scholar
  57. Schmidt PW, Williams GE (1995) The Neoproterozoic climatic paradox: equatorial palaeolatitude for Marinoan glaciation near sea level in south Australia. Earth Planet Sci Lett 134:107–124CrossRefGoogle Scholar
  58. Söderlund U, Elming S-Å, Ernst RE, Schissel D (2006) The central Scandinavian dolerite group – protracted hotspot activity or back-arc magmatism? Constraints from U-Pb baddeleyite geochronology and Hf isotopic data. Precambrian Res 150:136–152CrossRefGoogle Scholar
  59. Symons DTA, Harris MJ (2005) Accretion history of the Trans-Hudson orogen in Manitoba and Saskatchewan from paleomagnetism. Can J Earth Sci 42:723–740CrossRefGoogle Scholar
  60. Tohver E, van der Pluijm A, Van der Voo R, Rizzoto G, Scandolara JE (2002) Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the llano segment of Laurentia. Earth Planet Sci Lett 199:185–200Google Scholar
  61. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010a) Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–355CrossRefGoogle Scholar
  62. Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and dissection of an Aptian Salt Basin. Geophys J Int 177:1315–1333CrossRefGoogle Scholar
  63. Torsvik TH, Rousse S, Smethurst MA (2010b) Reply to comment by D. Aslanian and M. Moulin on ‘a new scheme for the opening of the south Atlantic ocean and the dissection of an Aptian salt basin’. Geophys J Int 183:29–34CrossRefGoogle Scholar
  64. Van der Voo R (1990) The reliability of paleomagnetic data. Tectonophysics 184:1–9CrossRefGoogle Scholar
  65. Vigneresse JL (2005) The specific case of the mid-prototerozoic rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambrian Res 137:1–34CrossRefGoogle Scholar
  66. Vuollo J, Huhma H (2005) Paleoproterozoic mafic dikes in NE Finland. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland – key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 193–235Google Scholar
  67. Wilde SA, Zhao G, Sun M (2002) Development of the North China Craton during the late archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global palaeoproterozoic supercontinent. Gondwana Res 5:85–94CrossRefGoogle Scholar
  68. Wingate MTD, Pisarevsky SA, Gladkochub DP, Donskaya TV, Konstantinov KM, Mazukabzov AM, Stanevich AM (2009) Geochronology and paleomagnetism of mafic igneous rocks in the Olenek uplift, northern Siberia: implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Res 170:256–266CrossRefGoogle Scholar
  69. Zhao G, Suna M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Geological Survey of Finland, South Finland UnitEspooFinland
  2. 2.Division of Geophysics and Astronomy, Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations