Advertisement

Enhanced Greenhouse Effect and Climate Change in Northern Europe

  • Jouni RäisänenEmail author
Chapter
Part of the Lecture Notes in Earth Sciences book series (LNESS, volume 137)

Abstract

The natural greenhouse effect keeps the surface of the Earth much warmer than it would be otherwise, thus making our planet habitable. Currently, the greenhouse effect is becoming stronger, because of anthropogenic increases in the concentrations of carbon dioxide and other greenhouse gases. This is projected to increase the global mean temperature by 1–6°C during this century, but the magnitude of the warming and the nature of the other accompanying climate changes will be geographically variable. For northern Europe, climate models suggest a larger warming in winter than summer. Annual precipitation is projected to increase but, in comparison with the natural variability of climate, this change is expected to be much less dramatic than that in temperature. Along with the average climate conditions, the extremes of climate will also change. For example, very mild winters like the one experienced in 2007–2008 are becoming gradually more common and cold winters like 2009–2010 less common.

Keywords

Greenhouse Effect Simulated Warming Enhance Greenhouse Effect Global Carbon Dioxide Emission Atlantic Ocean Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Harvey LDD (2000) Global warming: the hard science. Prentice Hall, HarlowGoogle Scholar
  2. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H Jr, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 663–745Google Scholar
  3. Houghton JT (2004) Global warming: the complete briefing, 3rd edn. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  4. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  5. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H Jr, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 433–497Google Scholar
  6. Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–208CrossRefGoogle Scholar
  7. Kulmala MT, Riipinen I, Kerminen VM (2012) Aerols and climate change. In: Haapala I (ed) From the Earth’s core to outer space. Lecture notes in Earth system sciences 137. Springer, Berlin/Heidelberg, pp 219–226Google Scholar
  8. Le Quéré C, Raupach MR, Canadell J, Marland G et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836. doi: 10.1038/ngeo689 CrossRefGoogle Scholar
  9. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007a) Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H Jr, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 747–845Google Scholar
  10. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007b) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  11. Nakićenović N et al (2000) Emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  12. Ojala AEK (2012) The late Quaternary climate history Northern Europe. In: Haapala I (ed) From the Earth’s core to outer space. Lecture notes in Earth system sciences 137. Springer, Berlin/Heidelberg, pp 199–218Google Scholar
  13. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: climate change impacts, adaptation and vulnerability. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  14. Räisänen J (2008a) Warmer climate: less or more snow? Climate Dyn 30:307–319CrossRefGoogle Scholar
  15. Räisänen J (2008b) Kasvihuoneilmiö, ilmastonmuutos ja vaikutukset (Greenhouse effect, climate change and impacts: in Finnish). Lecture compendium, Department of Physics, University of HelsinkiGoogle Scholar
  16. Räisänen J, Ruokolainen L (2008a) Estimating present climate in a warming world: a model-based approach. Climate Dyn 31:573–585CrossRefGoogle Scholar
  17. Räisänen J, Ruokolainen L (2008b) Ongoing global warming and local warm extremes: a case study of winter 2006–2007 in Helsinki, Finland. Geophysica 44:45–65Google Scholar
  18. Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296:727–730CrossRefGoogle Scholar
  19. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, LeRoy Miller H Jr, Chen Z (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge/New York, pp 235–336Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics, Division of Atmospheric SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations