Aerosols and Climate Change

  • Markku Kulmala
  • Ilona Riipinen
  • Veli-Matti Kerminen
Chapter
Part of the Lecture Notes in Earth Sciences book series (LNESS, volume 137)

Abstract

Climate change is probably the most crucial human-driven environmental problem: the humankind has changed the global radiative balance by changing the atmospheric composition. However, we do not know exactly how rapidly and in which way the global climate is changing. We know even less about what will happen to regional climate in the future. Aerosol particles and clouds can cool the climate, and therefore they counter the warming effect of greenhouse gases. Unfortunately, the effect of aerosols and clouds on radiative balance is currently uncertain, although – in recent years – scientific efforts have been able to improve our understanding.

Keywords

Aerosol Particle Gross Primary Production Atmospheric Aerosol Soot Particle Particle Number Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson HR (2009) Air pollution and mortality: a history. Atmos Environ 43:142–152CrossRefGoogle Scholar
  2. Arneth A, Unger N, Kulmala M, Andreae MO (2009) Clean the air, heat the planet. Science 326:672–673CrossRefGoogle Scholar
  3. Brasseur GP, Roeckner E (2005) Impact of improved air quality on the future evolution of climate. Geophys Res Lett 32. doi: 10.1029/2005GL023902
  4. Charlson RJ, Lovelock JE, Andreas MD, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  5. Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth rates of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEARII, Hyytiälä, Finland. Boreal Environ Res 10:323–336Google Scholar
  6. Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res 112:D11202. doi: 10.1029/2006JD008003 CrossRefGoogle Scholar
  7. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Cheanges in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  8. Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Geophys Res Lett 32:L23705. doi: 10.1029/2005GL024550 CrossRefGoogle Scholar
  9. Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820CrossRefGoogle Scholar
  10. Gu L, Baldocchi SB, Verma TA, Black T, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:4050. doi: 10.1029/2001JD001242 CrossRefGoogle Scholar
  11. Hand JL, Malm WC (2007) Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J Geophys Res 112:D16203. doi: 10.1029/2007JD008484 CrossRefGoogle Scholar
  12. Hari P, Kulmala M (2005) Station for measuring ecosystem-atmosphere relations (SMEAR II). Boreal Environ Res 10:315–322Google Scholar
  13. Jacob D, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63CrossRefGoogle Scholar
  14. Keppler F, Hamilton JGT, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191CrossRefGoogle Scholar
  15. Kopp RE, Mauzerall DL (2010) Assessing the climate benefits of black carbon mitigation. Proc Natl Acad Sci 107:11703–11708. doi: 10.1073/pnas.0909605107 CrossRefGoogle Scholar
  16. Kulmala M (2003) How particles nucleate and grow? Science 302:1000–1001CrossRefGoogle Scholar
  17. Kulmala M, Tammet H (2007) Finnish-Estonian air ion and aerosol workshops. Boreal Environ Res 12:237–245Google Scholar
  18. Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik Ü, Aalto PP, Keronen P, Hakola H, Bäck J, Hoffmann T, Vesala T, Hari P (2004a) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562CrossRefGoogle Scholar
  19. Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V-M, Birmili W, McMurry P (2004b) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176CrossRefGoogle Scholar
  20. Kulmala M, Riipinen I, Sipilä M, Manninen H, Petäjä T, Junninen H, Dal Maso M, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison RM, Hanson I, Leung C, Palmer R, Lehtinen KEJ, Kerminen V-M (2007) Towards direct measurement of atmospheric nucleation. Science 318:89–92CrossRefGoogle Scholar
  21. Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10: 1885–1898.Google Scholar
  22. Myhre G (2009) Consistency between satellite derived and modeled estimates of the direct aerosol effect. Science 325:187–190CrossRefGoogle Scholar
  23. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742CrossRefGoogle Scholar
  24. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540CrossRefGoogle Scholar
  25. Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjánsson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Grandey B, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevåg A, Iversen T, Seland Ø, Easter R, Ghan SJ, Rasch PJ, Morrison H, Lamarque J-F, Iacono MJ, Kinne S, Schulz M (2009) Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717CrossRefGoogle Scholar
  26. Raes F, Liao H, Chen W-T, Seinfeld JH (2010) Atmospheric chemistry-climate feedbacks. J Geophys Res 115:D12121. doi: 10.1029/2009JD013300 CrossRefGoogle Scholar
  27. Schwartz SE, Charlson RJ, Kahn RA, Ogren JA, Rodhe H (2010) Why hasn’t Earth warmed as much as expected? J Climate 23:2453–2464CrossRefGoogle Scholar
  28. Shindel D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300CrossRefGoogle Scholar
  29. Tunved P, Hansson H-C, Kerminen V-M, Ström J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263CrossRefGoogle Scholar
  30. Wang K, Dickinson RE, Liang S (2008) Observational evidence on the effects of clouds and aerosols on net ecosystem exchange and evapotranspiration. Geophys Res Lett 35:L10401. doi: 10.10292008GL034167 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markku Kulmala
    • 1
  • Ilona Riipinen
    • 1
  • Veli-Matti Kerminen
    • 2
  1. 1.Department of PhysicsUnivesity of HelsinkiHelsinkiFinland
  2. 2.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations