Late Quaternary Climate History of Northern Europe

  • Antti E. K. Ojala
Part of the Lecture Notes in Earth Sciences book series (LNESS, volume 137)


Understanding the full range of natural climate variability is a fundamental basis for palaeoclimate reconstruction and for estimating the magnitude of the anthropogenic influence on global change. Earth’s climate varies on many different time scales, and the magnitude and timing of temperature fluctuations has varied substantially between regions. Earth’s orbital changes are responsible for the past glacial-interglacial cycles, but the global climate has also constantly fluctuated throughout the present interglacial (the Holocene). This review presents current understanding of the recent glacial-interglacial cycles in the Eurasian region. In addition, general characteristics of the Holocene climate fluctuations in Northern Europe are introduced, focusing on two different aspects. The first is longer-term (millennial) cooling and warming trends and the magnitude of the variability at regional scales, whereas the second is a review of the evidence for shorter-term climate oscillations, such as the 8.2 ka cooling event in Northern Europe during the Holocene. Special attention is paid to historically documented decadal or centennial climate episodes, namely the Medieval Climate Anomaly and Little Ice Age, which have been reported from numerous palaeoproxy records globally, especially in the Northern Hemisphere.


North Atlantic Oscillation Temperature Reconstruction North Atlantic Region Medieval Climatic Anomaly Holocene Thermal Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, White JWC, Ram M, Waddington ED, Mayewski PA, Zeilinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the younger Dryas event. Nature 362:527–529CrossRefGoogle Scholar
  2. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  3. Alley RB (2000) The Younger Dryas cold interval as viewed from central Greenland. Quat Sci Rev 19: 213–226CrossRefGoogle Scholar
  4. Arppe L, Karhu J (2006) Implications for the Late Pleistocene climate in Finland and adjacent areas from the isotopic composition of mammoth skeletal remains. Palaeogeogr Palaeoclim Palaeoecol 231:322–330CrossRefGoogle Scholar
  5. Berglund BE (2003) Human impact and climate changes – synchronous events and a causal link? Quat Int 105:7–12CrossRefGoogle Scholar
  6. Björck S, Rundgren M, Ingólfsson O, Funder S (1997) The Preboreal oscillation around the Nordic Seas: terrestrial and lacustrine responses. J Quat Sci 12:455–465CrossRefGoogle Scholar
  7. Björck S, Muscheler R, Kromer B, Andresen CS, Heinemeier J, Johnsen SJ, Conley D, Koc N, Spurk M, Veski S (2001) High-resolution analysis of an early-Holocene climate event may imply decreased solar forcing as an important climate trigger. Geology 29:1107–1110CrossRefGoogle Scholar
  8. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266CrossRefGoogle Scholar
  9. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  10. Bradley RS (2000) 1000 years of climate change. Science 288:1353–1354CrossRefGoogle Scholar
  11. Bradley RS (2008) Holocene perspectives on future climate change. In: Battarbee RW, Binney HA (eds) Natural climate variability and global warming: a Holocene perspective. Wiley, Chichester, pp 254–268CrossRefGoogle Scholar
  12. Bradley RS, England JH (2008) The younger Dryas and the sea of ancient ice. Quat Res 70:1–10CrossRefGoogle Scholar
  13. Bradley RS, Jones PD (1993) ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376CrossRefGoogle Scholar
  14. Bradley RS, Briffa KR, Cole J, Hughes MK, Osborn TJ (2003) The climate of the last millennium. In: Alverson KD, Bradley RS, Pedersen T (eds) Palaeoclimate, global change and the future. Springer-Verlag, Berlin, pp 105–141CrossRefGoogle Scholar
  15. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105CrossRefGoogle Scholar
  16. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  17. Chen DL, Hellstrom C (1999) The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: spatial and temporal variations. Tellus A51:505–516Google Scholar
  18. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  19. Crowley TJ, Lowery TS (2000) How warm was the Medieval warm period. Ambio 29: 51–54Google Scholar
  20. Dansgaard W, Johnsen SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU (1975) Climatic changes, Norsemen and modern man. Nature 255:24–28CrossRefGoogle Scholar
  21. Davis BAS, Brewer S, Stevenson AC, Guiot J, Contributors D (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716CrossRefGoogle Scholar
  22. Ehlers J, Gibbard PL (eds) (2004) Quaternary glaciations: extent and chronology 2: part II North America. Elsevier, AmsterdamGoogle Scholar
  23. Eronen M, Hyvärinen H, Zetterberg P (1999) Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged scots pines dated by tree-rings. Holocene 9:569–580CrossRefGoogle Scholar
  24. Field M, Huntley B, Müller H (1994) Eemian climate fluctuations observed in a European pollen record. Nature 371:779–783CrossRefGoogle Scholar
  25. Fisher H, Werner M, Wagenbach D (1998) Little ice age clearly recorded in northern Greenland ice cores. Geophys Res Lett 25:1749–1752CrossRefGoogle Scholar
  26. Funder S (1989) Quaternary geology of the ice-free areas and adjacent shelves of Greenland. In: Fulton RJ (ed) Quaternary geology of Canada and Greenland. Geological Survey of Canada, OttawaGoogle Scholar
  27. Giesecke T, Miller PA, Sykes MT, Ojala AEK, Seppä H, Bradshaw RHW (2010) The effect of past changes in inter-annual temperature variability on tree distribution limits. J Biogeogr 37:1394–1405CrossRefGoogle Scholar
  28. Grove JM (1988) The little ice age. Methuen, LondonCrossRefGoogle Scholar
  29. Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale: implications for paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225:43–52CrossRefGoogle Scholar
  30. Helmens KF, Räsänen M, Johansson PW, Jungner H, Korjonen K (2000) The last Interglacial-Glacial cycle in NE Fennoscandia: a nearly continuous record from Sokli (Finnish Lapland). Quat Sci Rev 19:1605–1623CrossRefGoogle Scholar
  31. Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat Sci Rev 21:203–231CrossRefGoogle Scholar
  32. Hyvärinen H, Alhonen P (1994) Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. Holocene 4:251–258CrossRefGoogle Scholar
  33. Imbrie J, Hays JD, Martinson GD, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton N (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Berger A (ed) Milankovitch and climate. Reidel, Dordrecht, pp 269–305Google Scholar
  34. Isarin RFB (1998) Permafrost distribution and temperatures in Europe during the younger Dryas. Permafr Periglac Process 8:313–333CrossRefGoogle Scholar
  35. Isarin RFB, Bohncke SJP (1999) Mean July temperatures during the younger Dryas in northwestern and central Europe as inferred from climate indicator plant species. Quat Res 51:158–173CrossRefGoogle Scholar
  36. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdotter AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, Dye-3, GRIP, GISP, Renland and NorthGRIP. J Quat Sci 16:299–307CrossRefGoogle Scholar
  37. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensenm JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317:793–796CrossRefGoogle Scholar
  38. Karlén W (1988) Scandinavian glacial and climate fluctuations during the Holocene. Quat Sci Rev 7:199–209CrossRefGoogle Scholar
  39. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdóttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23:529–560CrossRefGoogle Scholar
  40. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  41. Lamb HH (1965) The early medieval warm epoch and its sequel. Palaeogeog Palaeoclim Palaeoecol 1:13–37CrossRefGoogle Scholar
  42. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  43. Lockwood M, Harrison RG, Woollings T, Solanki SK (2010) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5, doi:10.1088/1748-9326/5/2/024001Google Scholar
  44. Mäkilä M, Saarnisto M (2008) Carbon accumulation in Boreal peatlands during the Holocene. In: Strack M (ed) Peatlands and climate change. International Peat Society, Saarijärvi, pp 24–43Google Scholar
  45. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  46. Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  47. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326: 1256–1260CrossRefGoogle Scholar
  48. Marmo JS, Ojakangas RW (1984) Lower proterozoic glaciogenic deposits, eastern Finland. Geol Soc Am Bull 98:1055–1062CrossRefGoogle Scholar
  49. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  50. Meese DA, Gow AJ, Grootes P, Mayewski PA, Ram M, Stuiver M, Taylor KC, Waddington ED, Zielinski GA (1994) The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science 266:1680–1682CrossRefGoogle Scholar
  51. NGRIP Members (2004) High resolution climate record of the Northern hemisphere back into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  52. Milankovitch M (1941) Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serb Sci Spec Publ 132, Section of Mathematical and Natural Sciences, 33, BelgradeGoogle Scholar
  53. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  54. Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280CrossRefGoogle Scholar
  55. Ojala AEK, Alenius T (2005) 10 000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Palaeogeogr Palaeoclim Palaeoecol 219:285–302CrossRefGoogle Scholar
  56. Ojala AEK, Heinsalu A, Kauppila T, Alenius T, Saarnisto M (2008a) Characterizing changes in the sedimentary environment of a varved lake sediment record in southern central Finland around 8000 cal. yr BP. J Quat Sci 23:765–775CrossRefGoogle Scholar
  57. Ojala AEK, Alenius T, Seppä H, Giesecke T (2008b) Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes. Holocene 18:529–538CrossRefGoogle Scholar
  58. Rapp D (2009) Ice ages and interglacials, measurements, interpretations and models. Praxis Publishing LDT, ChichesterCrossRefGoogle Scholar
  59. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci. doi: 10.1038/NGEO513
  60. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61:261–293CrossRefGoogle Scholar
  61. Saarnisto M, Lunkka JP (2004) Climate variability during the last interglacial-glacial cycle in NW Eurasia. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Developments in Paleoenvironmental research 6. Springer, Dordrecht, pp 443–464CrossRefGoogle Scholar
  62. Saarnisto M, Eriksson B, Hirvas H (1999) Tepsankumpu revisited – pollen evidence of stable Eemian climates in Finnish Lapland. Boreas 28:12–22CrossRefGoogle Scholar
  63. Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704CrossRefGoogle Scholar
  64. Seppä H, Birks HJB, Giesecke T, Hammarlund D, Alenius T, Antonsson K, Bjune AE, Heikkilä M, MacDonald GM, Ojala AEK, Telford RJ, Veski S (2007) Spatial structure of the 8200 cal yr BP event in northern Europe. Clim Past 3:225–236CrossRefGoogle Scholar
  65. Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim Past 5:523–535CrossRefGoogle Scholar
  66. Shacleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Keene JB, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westberg-Smith J (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in North Atlantic region. Nature 307:620–623CrossRefGoogle Scholar
  67. Snowball I, Zillén L, Gaillard M-J (2002) Rapid early-Holocene environmental changes in northern Sweden based on studies of two varved lake-sediment sequences. Holocene 12:7–16CrossRefGoogle Scholar
  68. Snowball IF, Korhola A, Briffa K, Koç N (2004) Holocene climate dynamics in Fennoscandia and North Atlantic. In: Battarbee RW, Gasse F, Stickley CE (eds) Developments in Paleoenvironmental research: climate variability in Europe and Africa. Springer, Dordrecht, pp 465–494CrossRefGoogle Scholar
  69. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  70. Stuiver M, Braziunas TF (1993) Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationship. Holocene 3:289–305CrossRefGoogle Scholar
  71. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson Ó, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud M, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen R, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  72. Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999) Last glacial maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim Dyn 15:227–240CrossRefGoogle Scholar
  73. Tiljander M, Saarnisto M, Ojala AEK, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas 26:566–577Google Scholar
  74. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80CrossRefGoogle Scholar
  75. Väliranta M, Kultti S, Seppä H (2006) Vegetation dynamics during the younger Dryas-Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas 35:202–212CrossRefGoogle Scholar
  76. Väliranta M, Birks HH, Helmens K, Engels S, Piirainen M (2009) Early Weichselian interstadial (MIS 5c) summer temperatures were higher than today in northern Fennoscandia. Quat Sci Rev 28:777–782CrossRefGoogle Scholar
  77. Veski S, Seppä H, Ojala AEK (2004) Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684CrossRefGoogle Scholar
  78. Walker MJC, Bohncke SJP, Coope GR, O’Connell M, Usinger H, Verbruggenet C (1994) The Devensian/Weichselian late-glacial in Northwest Europe (Ireland, Britain, North Belgium, The Netherlands, Northwest Germany). J Quat Sci 9:109–118CrossRefGoogle Scholar
  79. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice C, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  80. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Geological Survey of FinlandEspooFinland

Personalised recommendations