Intravital Multiphoton Imaging of Immune Cells

  • Jo Keeble
  • Chi Ching Goh
  • Yilin Wang
  • Wolfgang Weninger
  • Lai Guan Ng
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 120)


Intravital multiphoton microscopy (MP-IVM) is a powerful imaging approach that allows direct visualization of cells within their native environment in real time. Multiphoton imaging of immune cells has been performed in different tissues, and these studies have revealed intriguing insights into the unique migratory and interactive behavior of immune cells in the steady-state and during disease conditions. Here we provide an overview of a MP-IVM model of the mouse ear skin, as well as the benefits, limitations and pitfalls of this approach. We also discuss the prospects of intravital imaging in the areas of image analysis, data management and standardization.


Multiphoton Microscopy Intravital Imaging Dermal Dendritic Cell Open Microscopy Environ Immune Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Banchereau et al. 1998]
    Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392(6673), 245–252 (1998), doi:10.1038/32588CrossRefGoogle Scholar
  2. [Bonasio et al. 2006]
    Bonasio, R., von Andrian, U.H.: Generation, migration and function of circulating dendritic cells. Curr. Opin. Immunol. 18(4), 503–511 (2006); doi:S0952-7915(06)00106-3 [pii] 10.1016/j.coi.2006.05.011CrossRefGoogle Scholar
  3. [Bousso et al. 2002]
    Bousso, P., Bhakta, N.R., Lewis, R.S., Robey, E.: Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296(5574), 1876–1880 (2002); doi:10.1126/science.1070945 296/5574/1876 [pii]CrossRefGoogle Scholar
  4. [Cahalan et al. 2008]
    Cahalan, M.D., Parker, I.: Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu. Rev. Immunol. 26, 585–626 (2008); doi:10.1146/annurev.immunol.24.021605.090620 CrossRefGoogle Scholar
  5. [Dickinson et al. 2001]
    Dickinson, M.E., Bearman, G., Tille, S., Lansford, R., Fraser, S.E.: Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31(6),1272, 1274–1276, 1278 (2001)Google Scholar
  6. [Ducros et al. 2009]
    Ducros, M., Moreaux, L., Bradley, J., Tiret, P., Griesbeck, O., Charpak, S.: Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One 4(2), e4418 (2009); doi:10.1371/journal.pone.0004418CrossRefGoogle Scholar
  7. [Faust et al. 2000]
    Faust, N., Varas, F., Kelly, L.M., Heck, S., Graf, T.: Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96(2), 719–726 (2000)Google Scholar
  8. [Gebhardt et al. 2009]
    Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., Carbone, F.R.: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10(5), 524–530 (2009); doi:ni.1718 [pii] 10.1038/ni.1718CrossRefGoogle Scholar
  9. [Germain et al. 2006]
    Germain, R.N., Miller, M.J., Dustin, M.L., Nussenzweig, M.C.: Dynamic imaging of the immune system: progress, pitfalls and promise. Nat. Rev. Immunol. 6(7), 497–507 (2006); doi:nri1884 [pii] 10.1038/nri1884CrossRefGoogle Scholar
  10. [Havran et al. 1988]
    Havran, W.L., Allison, J.P.: Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335(6189), 443–445 (1988); doi:10.1038/335443a0CrossRefGoogle Scholar
  11. [Hiraoka et al. 1991]
    Hiraoka, Y., Swedlow, J.R., Paddy, M.R., Agard, D.A., Sedat, J.W.: Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena. Semin. Cell. Biol. 2(3), 153–165 (1991)Google Scholar
  12. [Jung et al. 2000]
    Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., Littman, D.R.: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20(11), 4106–4114 (2000)CrossRefGoogle Scholar
  13. [Kissenpfennig et al. 2005]
    Kissenpfennig, A., Henri, S., Dubois, B., Laplace-Builhe, C., Perrin, P., Romani, N., Tripp, C.H., Douillard, P., Leserman, L., Kaiserlian, D., Saeland, S., Davoust, J., Malissen, B.: Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22(5), 643–654 (2005); doi:S1074-7613(05)00131-7 [pii] 10.1016/j.immuni.2005.04.004CrossRefGoogle Scholar
  14. [Lansford et al. 2001]
    Lansford, R., Bearman, G., Fraser, S.E.: Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6(3), 311–318 (2001); doi:10.1117/1.1383780CrossRefGoogle Scholar
  15. [Lindquist et al. 2004]
    Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L., Nussenzweig, M.C.: Visualizing dendritic cell networks in vivo. Nat. Immunol. 5(12), 1243–1250 (2004); doi:ni1139 [pii] 10.1038/ni1139CrossRefGoogle Scholar
  16. [Matheu et al. 2008]
    Matheu, M.P., Beeton, C., Garcia, A., Chi, V., Rangaraju, S., Safrina, O., Monaghan, K., Uemura, M.I., Li, D., Pal, S., de la Maza, L.M., Monuki, E., Flugel, A., Pennington, M.W., Parker, I., Chandy, K.G., Cahalan, M.D.: Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29(4), 602–614 (2008); doi:S1074-7613(08)00408-1 [pii] 10.1016/j.immuni.2008.07.015CrossRefGoogle Scholar
  17. [Mempel et al. 2004]
    Mempel, T.R., Henrickson, S.E., Von Andrian, U.H.: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970), 154–159 (2004); doi:10.1038/nature02238CrossRefGoogle Scholar
  18. [Miller et al. 2002]
    Miller, M.J., Wei, S.H., Parker, I., Cahalan, M.D.: Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 1869–1873 (2002); doi:10.1126/science.1070051CrossRefGoogle Scholar
  19. [Mohr et al. 2001]
    Mohrs, M., Shinkai, K., Mohrs, K., Locksley, R.M.: Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15(2), 303–311 (2001); doi:S1074-7613(01)00186-8 [pii]CrossRefGoogle Scholar
  20. [Nathan 2006]
    Nathan, C.: Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6(3), 173–182 (2006); doi:nri1785 [pii] 10.1038/nri1785MathSciNetCrossRefGoogle Scholar
  21. [Ng et al. 2008]
    Ng, L.G., Hsu, A., Mandell, M.A., Roediger, B., Hoeller, C., Mrass, P., Iparraguirre, A., Cavanagh, L.L., Triccas, J.A., Beverley, S.M., Scott, P., Weninger, W.: Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog. 4(11), 1000222 (2008), doi:10.1371/journal.ppat.1000222CrossRefGoogle Scholar
  22. [Peters et al. 2008]
    Peters, N.C., Egen, J.G., Secundino, N., Debrabant, A., Kimblin, N., Kamhawi, S., Lawyer, P., Fay, M.P., Germain, R.N., Sacks, D.: In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891), 970–974 (2008); doi:321/5891/970 [pii] 10.1126/science.1159194CrossRefGoogle Scholar
  23. [Roediger et al. 2008]
    Roediger, B., Ng, L.G., Smith, A.L., de St Groth, B.F., Weninger, W.: Visualizing dendritic cell migration within the skin. Histochem. Cell Biol. 130(6), 1131–1146 (2008); doi:10.1007/s00418-008-0531-7CrossRefGoogle Scholar
  24. [Sen et al. 2010]
    Sen, D., Forrest, L., Kepler, T.B., Parker, I., Cahalan, M.D.: Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proc. Natl. Acad. Sci. USA 107(18), 8334–8339 (2010); doi:0912817107 [pii] 10.1073/pnas.0912817107CrossRefGoogle Scholar
  25. [Sumaria et al. 2011]
    Sumaria, N., Roediger, B., Ng, L.G., Qin, J., Pinto, R., Cavanagh, L.L., Shklovskaya, E., Fazekas de St Groth, B., Triccas, J.A., Weninger, W.: Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. J. Exp. Med. 208(3), 505–518 (2011); doi:jem.20101824 [pii] 10.1084/jem.20101824CrossRefGoogle Scholar
  26. [Swedlow et al. 2003]
    Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and quantitative analysis in biological imaging. Science 300(5616), 100–102 (2003); doi:10.1126/science.1082602CrossRefGoogle Scholar
  27. [Wan et al. 2005]
    Wan, Y.Y., Flavell, R.A.: Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102(14), 5126–5131 (2005); doi:0501701102 [pii] 10.1073/pnas.0501701102 CrossRefGoogle Scholar
  28. [Witte et al. 2011]
    Witte, S., Negrean, A., Lodder, J.C., de Kock, C.P., Testa Silva, G., Mansvelder, H.D., Louise Groot, M.: Label-free live brain imaging and targeted patching with third-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA (2011); doi:1018743108 [pii] 10.1073/pnas.1018743108 Google Scholar
  29. [Varas et al. 2007]
    Zhang, J., Varas, F., Stadtfeld, M., Heck, S., Faust, N., Graf, T.: CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Exp. Hematol. 35(3), 490–499 (2007); doi:S0301-472X(06)00714-4 [pii] 10.1016/j.exphem.2006.11.011CrossRefGoogle Scholar
  30. [Zinselmeyer et al. 2008]
    Zinselmeyer, B.H., Lynch, J.N., Zhang, X., Aoshi, T., Miller, M.J.: Video-rate two-photon imaging of mouse footpad - a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res. 57(3), 93–96 (2008); doi:10.1007/s00011-007-7195-yCrossRefGoogle Scholar
  31. [Zoumi et al. 2002]
    Zoumi, A., Yeh, A., Tromberg, B.J.: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99(17), 11014–11019 (2002); doi:10.1073/pnas.172368799CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Jo Keeble
    • 1
  • Chi Ching Goh
    • 1
  • Yilin Wang
    • 1
  • Wolfgang Weninger
    • 2
    • 3
    • 4
  • Lai Guan Ng
    • 1
  1. 1.Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR)BiopolisSingapore
  2. 2.The Centenary InstituteNewtownAustralia
  3. 3.Discipline of DermatologyUniversity of SydneyCamperdownAustralia
  4. 4.Australia & Department of DermatologyRoyal Prince Alfred HospitalCamperdownAustralia

Personalised recommendations