The Comparison of Classification Model with Partial Least Square Based Dimension Reduction

  • Su-Fen Chen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 121)


Dimension reduction is a very important technique to handle with the analysis of high dimensional data sets. Among various methods, Partial Least Square based Dimension Reduction (PLSDR) is one of the most effective one, which has been applied in many fields such as the analysis of microarray data. But the problem of choosing classification model with PLSDR has often been neglected, different classification models are applied arbitrary. Aim at this problem, the paper gives an examination of different classification model with PLSDR by intensive experiments. Furthermore, some interesting conclusions are presented.


Support Vector Machine Partial Little Square Ordinary Little Square Linear Discriminant Analysis Dimension Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression. Bioinformatics and Computational Biology 286(5439), 531–537 (1999)Google Scholar
  2. 2.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. National Acad. Sciences 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  3. 3.
    Antoniadis, A., Lambert-Lacroix, S., Leblanc, F.: Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19(5), 563–570 (2003)CrossRefGoogle Scholar
  4. 4.
    Nguyen, D.V., David, D.M., Rocke, M.: On partial least squares dimension reduction for microarray-based classification: a simulation study. Computational Statistics and Data Analysis 46(3), 407–425 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dai, J.J., Lieu, L., Rocke, D.: Dimension reduction for classification with gene expression data. Statistical Applications in Genetics and Molecular Biology 5(1) Article 6 (2006)Google Scholar
  6. 6.
    Wold, S., Sjostrom, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58(22), 109–130 (2001)CrossRefGoogle Scholar
  7. 7.
    Nguyen, D.V., Rocke, D.M.: Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics 18(9), 1216–1226 (2002)CrossRefGoogle Scholar
  8. 8.
    Boulesteix, A.L.: PLS dimension reduction for classification of microarray data. Statistical Applications in Genetics and Molecular Biology 3(1) Article 33 (2004)Google Scholar
  9. 9.
    Shen, L., Tan, E.C.: Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE Transactions on Computational Biology and Bioinformatics 2(2), 166–175 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, Y., Rayens, W.: PLS and dimension reduction for classification. Computational Statistics 22, 189–208 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Rosipal, R., Trejo, L.J., Matthews, B.: Kernel PLS-SVC for linear and nonlinear classification. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 640–647 (2003)Google Scholar
  12. 12.
    Helland, I.S.: On the structure of partial least squares regression. Communications in Statistics, Simulation and Computation 17(22), 581–607 (1988)MathSciNetzbMATHGoogle Scholar
  13. 13.
    van’t Veer, L., Dai, H., van de Vijver, M., He, Y., Hart, A., Mao, M., Peterse, H., Kooy, K.D., Marton, M., Witteveen, A., Schreiber, G., Kerkhoven, R., Roberts, C., Linsley, P., Bernards, R., Friend, S.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)CrossRefGoogle Scholar
  14. 14.
    Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerovak, L.C., Blackk, P.M., Lau, C., Allen, J.C., Zagzag, D., Olson, J.M., Curran, T., Wetmo, C.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002)CrossRefGoogle Scholar
  15. 15.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson Jr, J.H., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefGoogle Scholar
  16. 16.
    Gordon, G.J., Jensen, R.V., Hsiao, L.L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 62(17), 4963–4967 (2002)Google Scholar
  17. 17.
    Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)CrossRefGoogle Scholar
  18. 18.
    Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Su-Fen Chen
    • 1
  1. 1.Department of Computer Science and TechnologyNanchang Institute of TechnologyNanchangChina

Personalised recommendations