A Semantic and Information Retrieval Based Approach to Service Contract Selection

  • Silvia Calegari
  • Marco Comerio
  • Andrea Maurino
  • Emanuele Panzeri
  • Gabriella Pasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)


Service contracts represent the agreement between the service provider and potential service consumers to use a specific service under given conditions; for each service multiple service contracts are available. In this paper we investigate a new approach to support the service contract selection by exploiting preferences both explicitly defined by a user and implicitly inferred from his/her context. The core of our approach is the use of multi-constraint queries expressed on punctual values and on textual descriptions. Both semantic-based and information retrieval (IR) techniques are applied. Experimental evaluations show the effectiveness of the proposed approach.


Information Retrieval Textual Description Service Discovery User Query Contractual Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.: Service Oriented Computing Research Roadmap. In: Dagstuhl Seminar Proceedings 05462, SOC (2006)Google Scholar
  2. 2.
    Toma, I., Roman, D., Fensel, D.: On describing and ranking services based on non-functional properties. In: Third International Conference on Next Generation Web Services Practices (NWESP 2007), pp. 61–66. IEEE Computer Society, Washington (2007)CrossRefGoogle Scholar
  3. 3.
    Comerio, M., Truong, H.-L., De Paoli, F., Dustdar, S.: Evaluating contract compatibility for service composition in the seCO2 framework. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 221–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Tang, B., Huan, Z.: Study on contract selection decision based on hybrid supply chains. In: Proc. of the Inter. Conf. on Measuring Technology and Mechatronics Automation. ICMTMA 2010, Washington, DC, USA, pp. 572–575 (2010)Google Scholar
  5. 5.
    Talluria, S., Leea, J.Y.: Optimal supply contract selection. International journal of production research 48(24), 7303–7320 (2011)CrossRefGoogle Scholar
  6. 6.
    Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service selection. In: Proc. of the Congress on Services (SERVICES), pp. 513–520 (2008)Google Scholar
  7. 7.
    Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly configurable web services. In: Proc. of the 16th International Conference on World Wide Web (WWW 2007), pp. 1013–1022. ACM, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A Qos-Aware Selection Model for Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 390–401. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Garcia, J.M., Toma, I., Ruiz, D., Ruiz-Cortes, A.: A service ranker based on logic rules evaluation and constraint programming. In: Proc. of 2nd Non Functional Properties and Service Level Agreements in SOCWorkshop (NFPSLASOC), Dublin, Ireland (2008)Google Scholar
  10. 10.
    Bajaj, S., Box, D., et al.: D.C.: Web Service Policy 1.2 - Framework (2006),
  11. 11.
    Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level agreements for web services. Journal of Network and Systems Management 11(1), 57–81 (2003)CrossRefGoogle Scholar
  12. 12.
    Palmonari, M., Comerio, M., De Paoli, F.: Effective and Flexible NFP-Based Ranking of Web Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 546–560. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non- Functional Property Descriptions of Web Services. In: Proc. of the IEEE International Conference on Web Services (ICWS), Beijing, China, pp. 393–400 (2008)Google Scholar
  14. 14.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  15. 15.
    Stokoe, C., Centre, I.: Word sense disambiguation in information retrieval revisited. In: ACM SIGIR, pp. 159–166 (2003)Google Scholar
  16. 16.
    Järvelin, K., Kekäläinem, J.: Cumulated gain-based evaluation of ir techniques. ACM Transaction on Information Systems (TOIS) 20(4), 422–446 (2002)CrossRefGoogle Scholar
  17. 17.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14. ACM, New York (2009)Google Scholar
  18. 18.
    Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., Frisoni, G.: Aggregated search of data and services. Information Systems 36(2), 134–150 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silvia Calegari
    • 1
  • Marco Comerio
    • 1
  • Andrea Maurino
    • 1
  • Emanuele Panzeri
    • 1
  • Gabriella Pasi
    • 1
  1. 1.Department of Informatics, Systems and Communication (DISCo)University of Milano-BicoccaMilanoItaly

Personalised recommendations