Advertisement

Messtechnik

  • Thomas FokenEmail author
Chapter
  • 3.7k Downloads

Zusammenfassung

Da meteorologische Messungen vorwiegend im bodennahen Bereich durchgeführt werden, erfolgen diese Messungen weitgehend im mikrometeorologischen Maßstabsbereich. Der Mangel an moderner messtechnischer Literatur ist unübersehbar, speziell im deutschsprachigen Raum. Aber auch international sind erst in den letzten Jahren wieder Übersichtswerke verfügbar. Aus diesem Grund ist den mikrometeorologischen Messungen ein spezielles Kapitel gewidmet. Im Gegensatz zu Lehrbüchern mit umfassenden Messgerätebeschreibungen sollen allgemeine Prinzipien der mikrometeorologischen Messungen, insbesondere solche, die für die optimale Anpassung des Messwertgebers an das Umgebungsmedium „turbulente Atmosphäre“ von Wichtigkeit sind, herausgearbeitet werden. Ein besonderesAugenmerk gilt dabei der Qualitätssicherung von Messdaten.

Schlüsselwörter

Messwerterfassung Qualitätssicherung Messgerätevergleiche atmosphärische Messungen Bodenmessungen 

Literatur

  1. Albrecht F (1927) Thermometer zur Messung der wahren Temperatur. Meteorol Z 24:420–424Google Scholar
  2. Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Oceanic Tech 6:280–292CrossRefGoogle Scholar
  3. Assmann R (1887) Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft. Das Wetter 4:245–286Google Scholar
  4. Assmann R (1888) Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft. Das Wetter 5:1–22Google Scholar
  5. Bartels J (1935) Zur Morphologie geophysikalischer Zeitfunktionen. Sitzungsberichte Preuß Akad Wiss 30:504–522Google Scholar
  6. Bentley JP (2005) Principles of measurement systems. Pearson Prentice Hall, HarlowGoogle Scholar
  7. Beyrich F, DeBruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Bound-Lay Meteorol 105:85–97CrossRefGoogle Scholar
  8. Bovscheverov VM, Voronov VP (1960) Akustitscheskii fljuger (Acoustic rotor). Izv AN SSSR, ser Geofiz 6:882–885Google Scholar
  9. Bowen AJ, Teunissen HW (1986) Correction factors for the directional response of Gill propeller anemometer. Bound-Lay Meteorol 37:407–413CrossRefGoogle Scholar
  10. Braud J, Noilhan P, Bessemoulin P, Mascart P, Haverkamp R, Vauclin M (1993) Bare ground surface heat and water exchanges under dry conditions. Bound-Lay Meteorol 66:173–200CrossRefGoogle Scholar
  11. Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University Press, New YorkGoogle Scholar
  12. Buck AL (1973) Development of an improved Lyman-alpha hygrometer. Atmos Technol 2:213–240Google Scholar
  13. de Vries DA (1963) Thermal properties of soils. In: van Wijk WR (Hrsg) Physics of the plant environment. North-Holland Publishing, Amsterdam, S 210–235Google Scholar
  14. DeBruin HAR (2002) Introduction: renaissance of scintillometry. Bound-Lay Meteorol 105:1–4CrossRefGoogle Scholar
  15. DeBruin HAR, Meijninger WML, Smedman A-S, Magnusson M (2002) Displaced-beam small aperture scintillometer test. part I: the WINTEX data-set. Bound-Lay Meteorol 105:129–148CrossRefGoogle Scholar
  16. DeFelice TP (1998) An introduction to meteorological instrumentation and measurement. Prentice Hall, Upper Saddle RiverGoogle Scholar
  17. DeGaetano AT (1997) A quality-control routine for hourly wind observations. J Atmos Oceanic Tech 14:308–317CrossRefGoogle Scholar
  18. Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309:5–24CrossRefGoogle Scholar
  19. DIN-EN (2009) Industrial platinum resistance thermometers and platinum temperature sensors (Industrielle Platin-Widerstandsthermometer und Platin Sensoren), IEC 60751:2008. Beuth-Verlag, BerlinGoogle Scholar
  20. DIN-ISO (1999) Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2, Allgemeine Berechnungsverfahren DIN ISO, 9613-2:26Google Scholar
  21. Doetsch G (1974) Introduction to the theory and application of the laplace transformation. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  22. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO irrigation drainage paper 24, 2. Aufl., S 145Google Scholar
  23. Drinkov R (1972) A solution to the paired Gill-anemometer response function. J Clim Appl Meteorol 11:76–80CrossRefGoogle Scholar
  24. Dunn G (2004) Statistical evaluation of measurement errors. Arnold, LondonGoogle Scholar
  25. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft. 238:134 SGoogle Scholar
  26. Edwards GC, Neumann HH, den Hartog G, Thurtell GW, Kidd G (1994) Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res 99(D1):1511–1518CrossRefGoogle Scholar
  27. Elagina LG (1962) Optitscheskij pribor dlja izmerenija turbulentnych pulsacii vlaschnosti (Optical sensor for the measurement of turbulent humidity fluctuations). Izv AN SSSR, ser Geofiz 12:1100–1107Google Scholar
  28. Fiebrich CA, Crawford KL (2001) The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automatic quality control. Bull Am Meteorol Soc 82:2173–2187CrossRefGoogle Scholar
  29. Foken T (1979) Temperaturmessung mit dünnen Platindrähten. Meteorol Z 29:299–307Google Scholar
  30. Foken T, Falke H (2012) Technical note: calibration device for the krypton hygrometer KH20. Atmos Meas Technol 5:1861–1867CrossRefGoogle Scholar
  31. Foken T, Oncley SP (1995) Results of the workshop ‘instrumental and methodical problems of land surface flux measurements’. Bull Am Meteorol Soc 76:1191–1193Google Scholar
  32. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agr Forest Meteorol 78:83–105CrossRefGoogle Scholar
  33. Foken T, Kaiser H, Rettig W (1983) Propelleranemometer: Überblick und spezielle Entwicklungen am Meteorologischen Hauptobservatorium Potsdam. Veröff Meteorol Dienstes DDR 24:48 SGoogle Scholar
  34. Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118Google Scholar
  35. Foken T, Buck AL, Nye RA, Horn RD (1998) A Lyman-alpha hygrometer with variable path length. J Atmos Oceanic Tech 15:211–214CrossRefGoogle Scholar
  36. Frankenberger E (1951) Untersuchungen über den Vertikalaustausch in den unteren Dekametern der Atmosphäre. Ann Meteorol 4:358–374Google Scholar
  37. Fuchs M (1986) Heat flux. In: Klute A (Hrsg) Methods of soil analysis, part 1: Physical and mineralogical methods, Bd 9. 2. Aufl. ASA and SSSA, Madison, S 957–968Google Scholar
  38. Gandin LS (1988) Complex quality control of meteorological observations. Mon Weather Rev 116:1137–1156CrossRefGoogle Scholar
  39. Gilgen H, Whitlock CH, Koch F, Müller G, Ohmura A, Steiger D, Wheeler R (1994) Technical plan for BSRN data management. World Radiation Monitoring Centre (WRMC), Technical report 1:56Google Scholar
  40. Halldin S, Lindroth A (1992) Errors in net radiometry, comparison and evaluation of six radiometer designs. J Atmos Oceanic Tech 9:762–783CrossRefGoogle Scholar
  41. Hanafusa T, Fujitana T, Kobori Y, Mitsuta Y (1982) A new type sonic anemometer-thermometer for field operation. Pap Meteorol Geophys 33:1–19CrossRefGoogle Scholar
  42. Hari P, Heliövaara K, Kulmala L (Hrsg.) (2013) Physical and physiological forest ecology. Springer, Dordrecht/Heidelberg/New York/LondonGoogle Scholar
  43. Haugen DA (1978) Effects of sampling rates and averaging periods on meteorological measurements. Fourth Symp Meteorol Observ Inst Am Meteorol Soc 15–18Google Scholar
  44. Hayden KL, Anlauf KG, Hoff RM, Strapp JW, Bottenheim JW, Wiebe HA, Froude FA, Martin JB, Steyn DG, McKendry IG (1997) The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ‘93. Atmos Environ 31:2089–2105CrossRefGoogle Scholar
  45. Helmis CG, Sgouros G, Tombrou M, Schäfer K, Münkel C, Bossioli E, Dandou A (2012) A comparative study and evaluation of mixing-height estimation based on sodar-RASS, ceilometer data and numerical model simulations. Bound-Lay Meteorol 145:507–526CrossRefGoogle Scholar
  46. Hill R (1997) Algorithms for obtaining atmospheric surface-layer from scintillation measurements. J Atmos Oceanic Tech 14:456–467CrossRefGoogle Scholar
  47. Hill MK, Clifford SF (1978) Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation. J Opt Soc Am 68:892–899CrossRefGoogle Scholar
  48. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J Opt Soc Am 70:1192–1205CrossRefGoogle Scholar
  49. Horton R, Wieringa PJ, Nielsen DR (1983) Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci Soc Am J 47:25–32CrossRefGoogle Scholar
  50. Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Technol 7:2967–2980CrossRefGoogle Scholar
  51. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Rem Sens Environ 83:195–213CrossRefGoogle Scholar
  52. Hupfer P, Kuttler W (Hrsg.) (2006) Witterung und Klima, begründet von Ernst Heyer. B. G. Teubner, Stuttgart/LeipzigGoogle Scholar
  53. ISO (1990) Solar energy – specification and classification of instruments for measuring hemispherical solar and direct solar radiation. ISO 9060.21Google Scholar
  54. ISO (2002) Meteorology – sonic anemometer/thermometer – acceptance test method for mean wind measurements. ISO 16622Google Scholar
  55. ISO (2007) Meteorology – wind measurements – part 1: Wind tunnel test methods for rotating anemometer performance. ISO 17713-1Google Scholar
  56. Jacobs AFG, McNaughton KG (1994) The excess temperature of a rigid fast-response thermometer and its effects on measured heat fluxes. J Atmos Oceanic Tech 11:680–686CrossRefGoogle Scholar
  57. Junghans (1967) Der Einfluß es Windes auf das Niederschlagsdargebot von Hängen. Archiv Forstw 16:579–585Google Scholar
  58. Kaimal JC, Businger JA (1963) A continuous wave sonic anemometer-thermometer. J Clim Appl Meteorol 2:156–164CrossRefGoogle Scholar
  59. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, New YorkGoogle Scholar
  60. Kaimal JC, Gaynor JE (1991) Another look to sonic thermometry. Bound-Lay Meteorol 56:401–410CrossRefGoogle Scholar
  61. Kallistratova MA (1959) Eksperimentalnoje issledovanie rassejenija zvuka v turbulentnoj atmosfere (An experimental investigation in the scattering of sound in the turbulent atmosphere). Dokl AN SSSR 125:69–72Google Scholar
  62. Kasten F (1985) Maintenance, calibration and comparison. Instrum Obs Methods Rep 23 (WMO/TD 51):65–84Google Scholar
  63. Kretschmer SI (1954) Metodika izmerenija mikropulsacii skorosti vetra i temperatura v atmosfere (A method to measure the fluctuations of the wind velocity and the temperature). Trudy geofiz inst AN SSSR 24(151):43–111Google Scholar
  64. Kretschmer SI, Karpovitsch JV (1973) Maloinercionnyj ultrafioletovyj vlagometer (Sensitive ultraviolet hygrometer). Izv AN SSSR, Fiz Atm Okeana 9:642–645Google Scholar
  65. Kristensen L (1998) Cup anemometer behavior in turbulent environments. J Atmos Oceanic Tech 15:5–17CrossRefGoogle Scholar
  66. Lai DYF, Roulet NT, Humphreys ER, Moore TR, Dalva M (2012) The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeoscience 9:3305–3322CrossRefGoogle Scholar
  67. Latimer JR (1972) Radiation measurement, International Field Year of the Great Lakes. Technical manual series no. 2, Information, Ottawa, 53Google Scholar
  68. Leuning R, Judd MJ (1996) The relative merits of open- and closed path analysers for measurements of eddy fluxes. Glob Chang Biol 2:241–254CrossRefGoogle Scholar
  69. Lexikon (1998) der Physik in 6 Bänden. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  70. Liebethal C, Foken T (2006) On the use of two repeatedly heated sensors in the determination of physical soil parameters. Meteorol Z 15:293–299CrossRefGoogle Scholar
  71. Liebethal C, Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climatol 88:43–56CrossRefGoogle Scholar
  72. Liebethal C, Huwe B, Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agr Forest Meteorol 132:253–262CrossRefGoogle Scholar
  73. Linacre ET (1994) Estimating U.S. Class-A pan evaporation from climate data. Water Int 19:5–14CrossRefGoogle Scholar
  74. Martini L, Stark B, Hunsalz G (1973) Elektronisches Lyman-Alpha-Feuchtigkeitsmessgerät. Meteorol Z 23:313–322Google Scholar
  75. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Bound-Lay Meteorol 121:67–88CrossRefGoogle Scholar
  76. Mayer JC, Hens K, Rummel U, Meixner FX, Foken T (2009) Moving measurement platforms – specific challenges and corrections. Meteorol Z 18:001–012CrossRefGoogle Scholar
  77. McAllister LG, Pollard JR, Mahoney AR, Shaw PJR (1969) Acoustic sounding – a new approach to the study of atmospheric structure. Proc IEEE 57:579–587CrossRefGoogle Scholar
  78. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, DeBruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface – Flevoland field experiment. Bound-Lay Meteorol 105:63–83CrossRefGoogle Scholar
  79. Meijninger WML, Lüdi A, Beyrich F, Kohsiek W, DeBruin HAR (2006) Scintillometer-based turbulent surface fluxes of sensible and latent heat over heterogeneous a land surface – a contribution to LITFASS-2003. Bound-Lay Meteorol 121:89–110CrossRefGoogle Scholar
  80. Mitsuta Y (1966) Sonic anemometer-thermometer for general use. J Meteor Soc Jpn Ser II 44:12–24Google Scholar
  81. Moene AF, van Dam JC (2014) Transport in the atmosphere-vegetation-soil continuum. Cambridge University Press, CambridgeGoogle Scholar
  82. Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol 188–189:589–611CrossRefGoogle Scholar
  83. Monson R, Baldocchi D (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, New YorkCrossRefGoogle Scholar
  84. Monteith JL, Unsworth MH (2008) Principles of environmental physics. 3. Aufl. Elsevier/Academic Press, Amsterdam/BostonGoogle Scholar
  85. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound-Lay Meteorol 37:17–35CrossRefGoogle Scholar
  86. Münkel C, Eresmaa N, Räsänen J, Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Bound-Lay Meteorol 124:117–128CrossRefGoogle Scholar
  87. Neff WD, Coulter RL (1986) Acoustic remote sounding. In: Lenschow DH (Hrsg) Probing the atmospheric boundary layer. American Meteorological Society, Boston, S 201–236Google Scholar
  88. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  89. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530Google Scholar
  90. Pathier R (2011) Messtechnik. Vieweg + Teubner, Braunschweig/WiesbadenGoogle Scholar
  91. Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D, MacPherson IJ (2006) Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agr Forest Meteorol 136:222–236CrossRefGoogle Scholar
  92. Philip JR (1961) The theory of heat flux meters. J Geophys Res 66:571–579CrossRefGoogle Scholar
  93. Philipona R, Fröhlich C, Betz C (1995) Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Appl Optics 34:1598–1605CrossRefGoogle Scholar
  94. Philipona R, Dutton EG, Stoffel T, Michalsky J, Reda I, Stifter A, Wendung P, Wood N, Clough SA, Mlawer EJ, Anderson G, Revercomb HE, Shippert TR (2001) Atmospheric longwave irradiance uncertainty: pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J Geophys Res: Atmos 106:28129–28141CrossRefGoogle Scholar
  95. Pihlatie MK et al (2013) Comparison of static chambers to measure CH4 emissions from soils. Agr Forest Meteorol 171–172:124–136CrossRefGoogle Scholar
  96. Profos P, Pfeifer T (Hrsg.) (1997) Grundlagen der Meßtechnik. Oldenbourg, München/WienGoogle Scholar
  97. Pumpanen J et al (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agr Forest Meteorol 123:159–176CrossRefGoogle Scholar
  98. Queitsch P (2002) TA Luft, Technische Anleitung zur Reinhaltung der Luft; Systematische Einführung mit Text der TA Luft 2002. Bundesanzeiger-Verl.-Ges, BonnGoogle Scholar
  99. Richardson SJ, Brock FV, Semmer SR, Jirak C (1999) Minimizing errors associated with multiplate radiation shields. J Atmos Oceanic Tech 16:1862–1872CrossRefGoogle Scholar
  100. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Ber d Dt Wetterdienstes 194:93Google Scholar
  101. Riederer M, Serafimovich A, Foken T (2014) Eddy covariance – chamber flux differences and its dependence on atmospheric conditions. Athmos Meas Tech 7:1057–1064CrossRefGoogle Scholar
  102. Rink J (1961) Thermistore und ihre Anwendung in der Meteorologie. Abh Meteorol Hydrol Dienstes DDR 63:58Google Scholar
  103. Rochette P, Hutchinson GL (2005) Measurement ofsoil respiration in situ: Chamber techniques. In: Hatfield JL, Baker I (Hrsg) Micrometeorology in agricultural systems, Bd 47. American Society of Agronomy, Madison, S 247–286Google Scholar
  104. Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey E, Lessard R, Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203CrossRefGoogle Scholar
  105. Sauer TJ, Harris AR, Ochsner TE, Horton R (2002) Errors in soil heat flux measurement: Effects of flux plate design and varying soil thermal properties. In: 25th symposium on agricultural and forest meteorology, S 11–12.Google Scholar
  106. Schönwiese C-D (2013) Praktische Statistik für Meteorologen und Geowissenschaftler. Borntraeger, StuttgartGoogle Scholar
  107. Schrüfer E, Reindl L, Zagar B (2014) Elektrische Messtechnik. Fachbuchverlag im Carl Hanser Verlag. München, LeipzigGoogle Scholar
  108. Sentelhas PC, Folegatti MV (2003) Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo). Revista Brasilleira de Engenharia Agricola e Ambiental 7:111–115CrossRefGoogle Scholar
  109. Sevruk B (1981) Methodische Untersuchungen des systematischen Messfehlers der Hellmann-Regenmesser im Sommerhalbjahr in der Schweiz. Mitt d Versuchsanstalt f Wasserb Hydrol u Glaziol 52:290Google Scholar
  110. Shearman RJ (1992) Quality assurance in the observation area of the meteorological office. Meteorol Mag 121:212–216Google Scholar
  111. Smajstrla AG, Zazueta FS, Clark GA, Pitts DJ (2000) Irrigation scheduling with evaporation pans. University of Florida, IFAS Ext Bul 254Google Scholar
  112. Smith DE, Metzger S, Taylor JR (2014) A transparent and transferable framework for tracking quality information in large datasets. PLoS One 9, e112249CrossRefGoogle Scholar
  113. Song C, Woodcock CE, Seto KC, Lenney MP, MacOmber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Rem Sens Environ 75:230–244CrossRefGoogle Scholar
  114. Sonntag D (1966-1968) Hygrometrie. Akademie-Verlag, BerlinGoogle Scholar
  115. Sonntag D (1994) Advancements in the field of hygrometry. Meteorol Z 3:51–66Google Scholar
  116. Sonntag D, Scholz K, Schulze K (1989) The psychrometer equation for Assmann aspiration psychrometer for use in meteorological practice. Instrum Obs Methods Rep 35 (WMO/TD No. 303):175–180Google Scholar
  117. Sturm P, Eugster W, Knohl A (2012) Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agr Forest Meteorol 152:73–82CrossRefGoogle Scholar
  118. Tatarski VI (1961) Wave propagation in a turbulent medium. McGraw-Hill, New YorkGoogle Scholar
  119. Taubenheim J (1969) Statistische Auswertung geophysikalischer und meteorologischer Daten. Geest & Portig, LeipzigGoogle Scholar
  120. Thiermann V, Grassl H (1992) The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound-Lay Meteorol 58:367–391CrossRefGoogle Scholar
  121. Tsvang LR (1960) Izmerenija tschastotnych spektrov temperaturnych pulsacij v prizemnom sloe atmosfery (Measurement of the spectra of the temperature fluctuations in the near surface layer of the atmosphere). Izv AN SSSR, ser Geofiz 10:1252–1262Google Scholar
  122. van der Hegge Zijnen BG (1956) Modified correlation formulae for heat transfer by natural and by forced convection from horizontal cylinders. Appl Sci Res A6:129–140Google Scholar
  123. van Driest ER (1959) Convective heat transfer in gases. In: Lin CC (Hrsg) High speed aerodynamics and jet propulsion, Bd V, Turbulent flow and heat transfer. Princeton University Press, Princeton, S 339–427Google Scholar
  124. van Loon WKP, Bastings HMH, Moors EJ (1998) Calibration of soil heat flux sensors. Agr Forest Meteorol 92:1–8CrossRefGoogle Scholar
  125. VDI (2000) Umweltmeteorologie, Meteorologische Messungen für Fragen der Luftreinhaltung – Wind, VDI 3786 Blatt2. Beuth Verlag, BerlinGoogle Scholar
  126. VDI (2006) Umweltmeteorologie – Meteorologische Messungen – Messstation, VDI 3786, Blatt 13. Beuth Verlag, BerlinGoogle Scholar
  127. VDI (2013) Umweltmeteorologie – Meteorologische Messungen – Grundlagen (Environmental meteorology – meteorological measurements – basics), VDI 3786, Blatt 1. Beuth-Verlag, BerlinGoogle Scholar
  128. Vuerich E, Monesi C, Lanza LG, Stagi L, Lanzinger E (2009) WMO field intercomparison of rainfall intensity gauches. Inst Obs Methods Rep 99:1–290Google Scholar
  129. Wang K, Liu C, Zheng X, Pihlatie M, Li B, Haapanala S, Vesala T, Liu H, Wang Y, Liu G, Hu F (2013) Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeoscience 10:6865–6877CrossRefGoogle Scholar
  130. Weitkamp C (2005) Lidar, range-resolved optical remote sensing of the atmosphere. Springer, New YorkGoogle Scholar
  131. Werle P, D'Amato F, Viciani S (2008) Tunable diode-laser spectroscopy: Principles, performance, perspectives. In: Lackner M (Hrsg) Lasers in chemistry – probing matter. Wiley-VCH, Weinheim, S 255–275Google Scholar
  132. WMO (2008) Guide to meteorological instruments and methods of observation (updated 2010, 2012). WMO, note. 8:7. AuflGoogle Scholar
  133. Wyngaard JC, Clifford SF (1978) Estimating momentum, heat and moisture fluxes from structure parameters. J Atmos Sci 35:1204–1211CrossRefGoogle Scholar
  134. Xu L, Furtaw MD, Madsen RA, Garcia RL, Anderson DJ, McDermitt DK (2006) On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. J Geophys Res Atmosph 111:D08S10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.BayreuthDeutschland

Personalised recommendations