Advertisement

Grundgleichungen der atmosphärischen Turbulenz

  • Thomas FokenEmail author
Chapter
  • 3.6k Downloads

Zusammenfassung

Vor der Ableitung aller relevanten Gleichungen zur Bestimmung der turbulenten Transporte von Impuls, Energie und Beimengungen erfolgt eine kurze Einführung zu den Grundgleichungen, die die Basis der entsprechenden Verfahren sind. Dazu gehören die Gleichungen für mittlere Bewegungen und für den turbulenten Fall einschließlich der entsprechenden Transportgleichungen für Wärme- und Beimengungen sowie die Gleichung für die turbulente kinetische Energie. Um zu zeigen, wie wichtig mikrometeorologische Ansätze und Parametrisierungen für die Modellierung in allen Maßstabsbereichen sind, werden verschiedene Schließungsansätze für das System der turbulenten Differenzialgleichungen beschrieben.

Schlüsselwörter

Navier-Stokes Gleichung Transportgleichungen Schließungsansätze Monin-Obukhov’sche Ähnlichkeitstheorie Kinetische Energie 

Literatur

  1. Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Oceanic Tech 6:280–292CrossRefGoogle Scholar
  2. Andreas EL (2002) Parametrizing scalar transfer over snow and ice: A review. J Hydrometeorol 3:417–432CrossRefGoogle Scholar
  3. Andreas EL, Claffey KJ, Fairall CW, Grachev AA, Guest PS, Jordan RE, Persson POG (2004) Measurements of the von Kármán constant in the atmospheric surface layer – further discussions. In: 16th conference on boundary layers and turbulence, Portland ME 2004, American Meteorological Society, S 1–7, paper 7.2Google Scholar
  4. Arya SP (1999) Air pollution meteorology and dispersion. Oxford University Press, New York/OxfordGoogle Scholar
  5. Arya SP (2001) Introduction to micrometeorology. Academic Press, San DiegoGoogle Scholar
  6. Beljaars ACM (1995) The parametrization of surface fluxes in large scale models under free convection. Q J Roy Meteorol Soc 121:255–270CrossRefGoogle Scholar
  7. Berkowicz R, Prahm LP (1984) Spectral representation of the vertical structure of turbulence in the convective boundary layer. Q J Roy Meteorol Soc 110:35–52CrossRefGoogle Scholar
  8. Bernhardt K (1970) Der ageostrophische Massenfluß in der Bodenreibungsschicht bei beschleunigungsfreier Strömung. Z Meteorol 21:259–279Google Scholar
  9. Bernhardt K (1972) Vorlesung ‘Dynamik der Atmosphäre’, Humboldt-Universität zu BerlinGoogle Scholar
  10. Bernhardt K (1975) Some characteristics of the dynamic air-surface interaction in Central Europe. Z Meteorol 25:63–68Google Scholar
  11. Bernhardt K (1980) Zur Frage der Gültigkeit der Reynoldsschen Postulate. Z Meteorol 30:361–368Google Scholar
  12. Bernhardt K-H (1995) Zur Interpretation der Monin-Obuchovschen Länge. Meteorol Z 4:81–82Google Scholar
  13. Beyrich F (1997) Mixing height estimation from sodar data – a critical discussion. Atmos Environ 31:3941–3953CrossRefGoogle Scholar
  14. Beyrich F, Leps J-P (2012) An operational mixing height data set from routine radiosoundings at Lindenberg: Methodology. Meteorol Z 21:337–348CrossRefGoogle Scholar
  15. Beyrich F, Kouznetsov RD, Leps J-P, Lüdi A, Meijninger WML, Weisensee U (2005) Structure parameters for temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteorol Z 14:641–649CrossRefGoogle Scholar
  16. Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  17. Blackadar AK, Tennekes H (1968) Asymptotic similarity in neutral barotropic planetary boundary layers. J Atmos Sci 25:1015–1020CrossRefGoogle Scholar
  18. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mem Savants Etrange 23:46 S.Google Scholar
  19. Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27:779–787CrossRefGoogle Scholar
  20. Brocks K, Krügermeyer L (1970) Die hydrodynamische Rauhigkeit der Meeresoberfläche. Ber Inst Radiometeorol Marit Meteorol 14:55Google Scholar
  21. Buckingham E (1914) On physically similar systems; illustration of the use of dimensional equations. Phys Rev 4:345–376CrossRefGoogle Scholar
  22. Busch NE, Chang SW, Anthes RA (1976) A multi-level model of the planetary boundary layer suitable for use with mesoscale dynamic models. J Appl Meteorol 15:909–919CrossRefGoogle Scholar
  23. Businger JA (1982) Equations and concepts. In: Nieuwstadt FTM, van Dop H (Hrsg) Atmospheric turbulence and air pollution modelling: A course held in The Hague, 21–25 September 1981. D. Reidel, Dordrecht, S 1–36Google Scholar
  24. Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Appl Meteorol 25:1100–1124CrossRefGoogle Scholar
  25. Businger JA (1988) A note on the Businger-Dyer profiles. Bound-Lay Meteorol 42:145–151CrossRefGoogle Scholar
  26. Businger JA, Yaglom AM (1971) Introduction to Obukhov’s paper “Turbulence in an atmosphere with a non-uniform temperature”. Bound-Lay Meteorol 2:3–6CrossRefGoogle Scholar
  27. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  28. Charnock H (1955) Wind stress on water surface. Q J Roy Meteorol Soc 81:639–642CrossRefGoogle Scholar
  29. Cheng Y, Bruntseart W (2005) Flux-profile relationships for wind speet and temperature in the stable atmospheric boundary layer. Bound-Lay Meteorol 114:519–538CrossRefGoogle Scholar
  30. Clarke RH (1970) Observational studies in the atmospheric boundary layer. Q J Roy Meteorol Soc 96:91–114CrossRefGoogle Scholar
  31. Clarke RH, Hess GD (1974) Geostrophic departure and the functions A and B of Rossby-number similarity theory. Bound-Lay Meteorol 7:267–287CrossRefGoogle Scholar
  32. Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22:469–473CrossRefGoogle Scholar
  33. Csanady GT (1967) On the “resistance law” of a turbulent Ekman-layer. J Atmos Sci 24:467–471CrossRefGoogle Scholar
  34. Davenport AG, Grimmond CSB, Oke TR, Wieringa J (2000) Estimating the roughness of cities and shelterred country. In: 12th conference on applied climatology, Ashville, NC 2000, American Meteorological Society, S 96–99Google Scholar
  35. Deardorff JW (1966) The counter-gradient heat flux in the lower atmosphere and in the laboratory. J Atmos Sci 23:503–506CrossRefGoogle Scholar
  36. Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J Atmos Sci 27:1211–1213CrossRefGoogle Scholar
  37. Dyer AJ (1974) A review of flux-profile-relationships. Bound-Lay Meteorol 7:363–372CrossRefGoogle Scholar
  38. ESDU (1972) Characteristics of wind speed in the lowest layers of the atmosphere near the ground: strong winds. Engineering Sciences Data Unit Ltd, London, S 35Google Scholar
  39. Etling D (2008) Theoretische Meteorologie. Springer, Berlin/HeidelbergGoogle Scholar
  40. Foken T (1990) Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage – Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten. Ber Dt Wetterdienstes 180:287Google Scholar
  41. Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Bound-Lay Meteorol 119:431–447CrossRefGoogle Scholar
  42. Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315Google Scholar
  43. Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse 48:75 S.Google Scholar
  44. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  45. Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound-Lay Meteorol 124:251–268CrossRefGoogle Scholar
  46. Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound-Lay Meteorol 91:165–186CrossRefGoogle Scholar
  47. Hantel M (2013) Einführung Theoretische Meteorologie. Springer Spektrum, Berlin/HeidelbergCrossRefGoogle Scholar
  48. Hasager CB, Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Q J Roy Meteorol Soc 125:2075–2102CrossRefGoogle Scholar
  49. Helmis CG, Sgouros G, Tombrou M, Schäfer K, Münkel C, Bossioli E, Dandou A (2012) A comparative study and evaluation of mixing-height estimation based on sodar-RASS, ceilometer data and numerical model simulations. Bound-Lay Meteorol 145:507–526CrossRefGoogle Scholar
  50. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J Opt Soc Am 70:1192–1205CrossRefGoogle Scholar
  51. Högström U (1974) A field study of the turbulent fluxes of heat water vapour and momentum at a ‘typical’ agricultural site. Q J Roy Meteorol Soc 100:624–639Google Scholar
  52. Högström U (1985) Von Kármán constant in atmospheric boundary flow: Reevaluated. J Atmos Sci 42:263–270CrossRefGoogle Scholar
  53. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound-Lay Meteorol 42:55–78CrossRefGoogle Scholar
  54. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972CrossRefGoogle Scholar
  55. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Bound-Lay Meteorol 78:215–246CrossRefGoogle Scholar
  56. Högström U, Hunt JCR, Smedman A-S (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound-Lay Meteorol 103:101–124CrossRefGoogle Scholar
  57. Højstrup J (1981) A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Bound-Lay Meteorol 21:341–356CrossRefGoogle Scholar
  58. Holzworth GC (1964) Estimates of mean maximum mixing depth in the contiguous United States. Mon Weather Rev 92:235–242CrossRefGoogle Scholar
  59. Holzworth GC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorol 6:1039–1044CrossRefGoogle Scholar
  60. Jacobson MZ (2005) Fundamentals of atmospheric modelling. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. Johansson C, Smedman A, Högström U, Brasseur JG, Khanna S (2001) Critical test of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566CrossRefGoogle Scholar
  62. Kader BA, Yaglom AM (1972) Heat and mass transfer laws for fully turbulent wall flows. Int J Heat Mass Transf 15:2329–2350CrossRefGoogle Scholar
  63. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, New YorkGoogle Scholar
  64. Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J Roy Meteorol Soc 98:563–589CrossRefGoogle Scholar
  65. Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows. Academic Press, San DiegoGoogle Scholar
  66. Kazanski AB, Monin AS (1960) A turbulent regime above the surface atmospheric layer (in Russian). Izv AN SSSR, ser Geofiz 1:110–112Google Scholar
  67. Kazanski AB, Monin AS (1961) On the dynamical interaction between the atmosphere and the Earth’s surface (in Russian). Izv AN SSSR, ser Geofiz 5:786–788Google Scholar
  68. Kitajgorodskij SA (1976) Die Anwendung der Ähnlichkeitstheorie für die Bearbeitung der Turbulenz in der bodennahen Schicht der Atmosphäre. Z Meteorol 26:185–204Google Scholar
  69. Kitajgorodskij SA, Volkov JA (1965) O rascete turbulentnych potokov tepla i vlagi v privodnom sloe atmosfery (The calculation of the turbulent fluxes of temperature and humidity in the atmosphere near the water surface) Izv AN SSSR. Fiz Atm Okeana 1:1317–1336Google Scholar
  70. Kohsiek W (1982) Measuring CT 2, CQ 2, and CTQ in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Bound-Lay Meteorol 24:89–107CrossRefGoogle Scholar
  71. Kolmogorov AN (1941a) Lokalnaja struktura turbulentnosti v neschtschimaemoi schidkosti pri otschen bolschich tschislach Reynoldsa (The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers). Dokl AN SSSR 30:299–303Google Scholar
  72. Kolmogorov AN (1941b) Rassejanie energii pri lokolno-isotropoi turbulentnosti (Dissipation of energy in locally isotropic turbulence). Dokl AN SSSR 32:22–24Google Scholar
  73. Kondo J, Sato T (1982) The determination of the von Kármán constant. J Meteor Soc Jpn 60:461–471Google Scholar
  74. Kramm G, Herbert F (2009) Similarity hypotheses for the atmospheric surface layer expressed by non-dimensional characteristic invariants – a review. Open Atmos Sci J 3:48–79CrossRefGoogle Scholar
  75. Kraus H (2004) Die Atmosphäre der Erde. Springer, Berlin/HeidelbergGoogle Scholar
  76. Kraus H (2008) Grundlagen der Grenzschichtmeteorologie. Springer, Berlin/HeidelbergGoogle Scholar
  77. Lettau HH (1957) Windprofil, innere Reibung und Energieumsatz in den untersten 500 m über dem Meer. Beitr Phys Atm 30:78–96Google Scholar
  78. Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New YorkGoogle Scholar
  79. Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz inst AN SSSR 24(151):163–187Google Scholar
  80. Monin AS, Yaglom AM (1973) Statistical fluid mechanics: Mechanics of turbulence, Bd 1. MIT Press, Cambridge/LondonGoogle Scholar
  81. Monin AS, Yaglom AM (1975) Statistical fluid mechanics: Mechanics of turbulence, Bd 2. MIT Press, Cambridge/LondonGoogle Scholar
  82. Münkel C, Eresmaa N, Räsänen J, Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Bound-Lay Meteorol 124:117–128CrossRefGoogle Scholar
  83. Obukhov AM (1946) Turbulentnost’ v temperaturnoj – neodnorodnoj atmosfere (Turbulence in an atmosphere with a non-uniform temperature). Trudy Inst Theor Geofiz AN SSSR 1:95–115Google Scholar
  84. Obukhov AM (1949) Struktura temperaturnogo polja v turbulentnom potoke (Structure of the temperature field in the turbulent stream). Izv AN SSSR, ser geogr geofiz 13:58–69Google Scholar
  85. Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53:1029–1054CrossRefGoogle Scholar
  86. Paeschke W (1937) Experimentelle Untersuchungen zum Rauhigkeitsproblem in der bodennahen Luftschicht. Z Geophys 13:14–21Google Scholar
  87. Pandolfo JP (1966) Wind and temperature profiles for constant-flux boundary layers in lapse conditions with a variable eddy conductivity to eddy viscosity ratio. J Atmos Sci 23:495–502CrossRefGoogle Scholar
  88. Panofsky HA (1963) Determination of stress from wind and temperature measurements. Q J Roy Meteorol Soc 89:85–94CrossRefGoogle Scholar
  89. Panofsky HA, Dutton JA (1984) Atmospheric turbulence – models and methods for engineering applications. Wiley, New YorkGoogle Scholar
  90. Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Lay Meteorol 11:355–361CrossRefGoogle Scholar
  91. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Clim Appl Meteorol 9:857–861CrossRefGoogle Scholar
  92. Peltier LJ, Wyngaard JC, Khanna S, Brasseur JG (1996) Spectra in the unstable surface layer. J Atmos Sci 53:49–61CrossRefGoogle Scholar
  93. Peña A, Gryning S-E, Hasager C (2010) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100:325–335CrossRefGoogle Scholar
  94. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z angew Math Mech 5:136–139Google Scholar
  95. Pruitt WO, Morgan DL, Lourence FJ (1973) Momentum and mass transfer in the surface boundary layer. Q J Roy Meteorol Soc 99:370–386CrossRefGoogle Scholar
  96. Reithmaier LM, Göckede M, Markkanen T, Knohl A, Churkina G, Rebmann C, Buchmann N, Foken T (2006) Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites. Theor Appl Climatol 84:219–233CrossRefGoogle Scholar
  97. Roll HU (1948) Wassernahes Windprofil und Wellen auf dem Wattenmeer. Ann Meteorol 1:139–151Google Scholar
  98. Salby ML (2012) Physics of the atmosphere and climate. Cambridge University Press, CambridgeGoogle Scholar
  99. Schlichting H, Gersten K (2003) Boundary-layer theory. McGraw Hill, New YorkGoogle Scholar
  100. Schmitz-Peiffer A, Heinemann D, Hasse L (1987) The ageostrophic methode – an update. Bound-Lay Meteorol 39:269–281CrossRefGoogle Scholar
  101. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  102. Skeib G (1980) Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht. Z Meteorol 30:23–32Google Scholar
  103. Smedman A-S (1991) Some turbulence characteristics in stable atmospheric boundary layer flow. J Atmos Sci 48:856–868CrossRefGoogle Scholar
  104. Sonntag D (1990) Important new values of the physical constants of 1986, vapour pressure formulations based on the ITC-90, and psychrometer formulae. Z Meteorol 40:340–344Google Scholar
  105. Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, New YorkGoogle Scholar
  106. Sorbjan Z (2008) Gradient-based similarity in the atmospheric boundary layer. Acta Geophys 56:220–233Google Scholar
  107. Sreenivasan KR (1995) On the universality of the Kolmogorov constant. Phys Fluids 7:2778–2784CrossRefGoogle Scholar
  108. Sreenivasan KR (1996) The passive scalar spectrum and the Obukhov–Corrsin constant. Phys Fluids 8:189–196CrossRefGoogle Scholar
  109. Stull RB (1984) Transilient turbulence theorie, part 1: The concept of eddy mixing across finite distances. J Atmos Sci 41:3351–3367CrossRefGoogle Scholar
  110. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht/Boston/LondonCrossRefGoogle Scholar
  111. Tatarski VI (1961) Wave propagation in a turbulent medium. McGraw-Hill, New YorkGoogle Scholar
  112. Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond A 164:476–490CrossRefGoogle Scholar
  113. Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt FTM, Van Dop H (Hrsg) Atmospheric turbulence and air pollution modelling. D. Reidel, Dordrecht/Boston/London, S 37–68Google Scholar
  114. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. In: 15th conference on turbulence and boundary layers, Wageningen, 15-19 July 2002, American Meteorological Society, S 129–132Google Scholar
  115. Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Clim Appl Meteorol 11:783–792CrossRefGoogle Scholar
  116. Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Lay Meteorol 37:129–148CrossRefGoogle Scholar
  117. Troen I, Lundtang Petersen E (1990) Europäischer Windatlas. Risø National Laboratory, RoskildeGoogle Scholar
  118. Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Bound-Lay Meteorol 18:411–430CrossRefGoogle Scholar
  119. Wieringa J (1992) Updating the Davenport roughness classification. J Wind Eng Ind Aerodyn 41:357–368CrossRefGoogle Scholar
  120. Wippermann F, Yordanov D (1972) A note on the Rossby similarity for flows of barotropic planetary boundary layers. Beitr Phys Atm 45:66–71Google Scholar
  121. Wyngaard JC (1973) On surface layer turbulence. In: Haugen DH (Hrsg) Workshop on micrometeorology. American Meteorological Society, Boston, S 101–149Google Scholar
  122. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  123. Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28:190–201CrossRefGoogle Scholar
  124. Wyngaard JC, Coté OR, Izumi Y (1971a) Local free convection, similarity and the budgets of shear stree and heat flux. J Atmos Sci 28:1171–1182CrossRefGoogle Scholar
  125. Wyngaard JC, Izumi Y, Collins SA (1971b) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646–1650CrossRefGoogle Scholar
  126. Yaglom AM (1977) Comments on wind and temperature flux-profile relationships. Bound-Lay Meteorol 11:89–102CrossRefGoogle Scholar
  127. Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flow. Annu Rev Fluid Mech 11:505–540CrossRefGoogle Scholar
  128. Zilitinkevich SS (1969) On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus 21:17–24CrossRefGoogle Scholar
  129. Zilitinkevich SS (1970) Dinamika pogranichnogo sloia atmosfery (Dynamics of the atmospheric boundary layer). Gidrometeorologicheskoe Izdatelstvo, LeningradGoogle Scholar
  130. Zilitinkevich SS (1975) Resistance laws and prediction equations for the depth of the planetary boundary layer. J Atmos Sci 32:741–752CrossRefGoogle Scholar
  131. Zilitinkevich SS, Tschalikov DV (1968) Opredelenie universalnych profilej skorosti vetra i temperatury v prizemnom sloe atmosfery (Determination of universal profiles of wind velocity and temperature in the surface layer of the atmosphere). Izv AN SSSR, Fiz Atm Okeana 4:294–302Google Scholar
  132. Zilitinkevich SS, Perov VL, King JC (2002) Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation models. Q J Roy Meteorol Soc 128:1571–1587CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.BayreuthDeutschland

Personalised recommendations