Advertisement

A Secure and Efficient Proof of Integer in an Interval Range

  • Kun Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7089)

Abstract

A new range proof scheme is proposed in this paper. We study a related technique, range test, and show how its idea can be used to design a more advanced range proof technique. The main advantage of the new range proof technique over the existing solutions is that it achieves the best trade-off between soundness, privacy and efficiency. Is achieves information-theoretic and absolutely precise soundness and thus is more secure than those range proof schemes with conditional soundness. It achieves formally provable zero knowledge in privacy and thus is more secure than those range proof schemes without formally proven zero knowledge. It only needs a small constant number of computations and employs normal-length parameters and thus is more efficient than those range proof schemes needing super-linear cost or extra large integers.

Keywords

Encryption Algorithm Secret Message Security Property Encryption System Message Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Boudot, F., Traore, J.: Efficient Publicly Verifiable Secret Sharing Schemes with Fast or Delayed Recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J.L., Michels, M.: A Group Signature Scheme with Improved Efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Chaabouni, R., Lipmaa, H., Shelat, A.: Additive Combinatorics and Discrete Logarithm Based Range Protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  8. 8.
    Chida, K., Yamamoto, G.: Batch processing for proofs of partial knowledge and its applications. IEICE Trans. Fundamentals E91CA(1), 150–159 (2008)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Damgård, I., Cramer, R.: On ∑-protocols. Cryptologic Protocol Theory (2002), http://www.daimi.au.dk/~ivan/Sigma.ps
  11. 11.
    Fujisaki, E., Okamoto, T.: A Practical and Provably Secure Scheme for Publicly Verifiable Secret Sharing and its Applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Groth, J.: Non-Interactive Zero-Knowledge Arguments for Voting. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and honest verifier. In: JW-ISC 2000, pp. 101–108 (2000)Google Scholar
  14. 14.
    Lee, B., Kim, K.: Receipt-Free Electronic Voting Scheme with a Tamper-Resistant Randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Paillier, P.: Public Key Cryptosystem Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Peng, K., Bao, F.: Batch ZK Proof and Verification of or Logic. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 141–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Peng, K., Bao, F.: Batch Range Proof for Practical Small Ranges. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 114–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Peng, K., Bao, F., Dawson, E.: Correct, private, flexible and efficient range test. Journal of Researchand Practice in Information Technology 40(4), 275–291 (2008)Google Scholar
  20. 20.
    Poupard, G., Stern, J.: Fair Encryption of RSA Keys. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 172–189. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Schnorr, C.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kun Peng
    • 1
  1. 1.Institute For Inforcomm ResearchSingapore

Personalised recommendations