Advertisement

Fast Computation on Encrypted Polynomials and Applications

  • Payman Mohassel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7092)

Abstract

In this paper, we explore fast algorithms for computing on encrypted polynomials. More specifically, we describe efficient algorithms for computing the Discrete Fourier Transform, multiplication, division, and multipoint evaluation on encrypted polynomials. The encryption scheme we use needs to be additively homomorphic, with a plaintext domain that contains appropriate primitive roots of unity. We show that some modifications to the key generation setups and working with variants of the original hardness assumptions one can adapt the existing homomorphic encryption schemes to work in our algorithms.

The above set of algorithms on encrypted polynomials are useful building blocks for the design of secure computation protocols. We demonstrate their usefulness by utilizing them to solve two problems from the literature, namely the oblivious polynomial evaluation (OPE) and the private set intersection but expect the techniques to be applicable to other problems as well.

Keywords

Encryption Scheme Polynomial Multiplication Oblivious Transfer Private Information Retrieval Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: size-hiding private set intersection, pp. 156–173 (2011)Google Scholar
  2. 2.
    Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the \(O(n^{\frac{1}{2k-1}})\) barrier for information-theoretic private information retrieval. In: FOCS 2002, pp. 261–270 (2002)Google Scholar
  3. 3.
    Chang, Y.-C., Lu, C.-J.: Oblivious Polynomial Evaluation and Oblivious Neural Learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010)Google Scholar
  5. 5.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 297–301 (1965)Google Scholar
  6. 6.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure Efficient Multiparty Computing of Multivariate Polynomials and Applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Franklin, M., Mohassel, P.: Efficient and Secure Evaluation of Multivariate Polynomials and Applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 236–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  16. 16.
    Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standard smartcards. In: ACM CCS, pp. 491–500 (2008)Google Scholar
  17. 17.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive ot and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Mohassel, P., Franklin, M.K.: Efficient Polynomial Operations in the Shared-Coefficient Setting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 44–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evalutation. In: STOC, pp. 245–254 (1999)Google Scholar
  24. 24.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Computing, 12–54 (2006)Google Scholar
  25. 25.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Shamir, A.: How to share a secret. Communications of the ACM, 612–613 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Payman Mohassel
    • 1
  1. 1.University of CalgaryCanada

Personalised recommendations