Expressive Encryption Systems from Lattices

(Abstract from the Invited Lecture)
  • Xavier Boyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7092)

Abstract

In this survey, we review a number of the many “expressive” encryption systems that have recently appeared from lattices, and explore the innovative techniques that underpin them.

Keywords

Random Oracle Encryption System Homomorphic Encryption Discrete Gaussian Distribution Bonsai Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model (July 2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/
  4. 4.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Fuzzy identity based encryption from lattices. Cryptology ePrint Archive, Report 2011/414 (2011), http://eprint.iacr.org/
  5. 5.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of STOC 1996, pp. 99–108. ACM, New York (1996)Google Scholar
  7. 7.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC, pp. 284–293 (1997)Google Scholar
  8. 8.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  9. 9.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption withoutrandom oracles. J. Cryptology 24(4), 659–693 (2011); Abstract in EUROCRYPT 2004MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Boyen, X.: Lattice Mixing and Vanishing Trapdoors – a Framework for Fully Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptology 20(3), 265–294 (2007); Abstract in EUROCRYPT 2003MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees or, How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)Google Scholar
  16. 16.
    Halevi, S.: Fully Homomorphic Encryption. Slides from Tutorial Session. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, Springer, Heidelberg (2011), http://www.iacr.org/conferences/crypto2011/slides/Halevi.pdf Google Scholar
  17. 17.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: Proceedings of FOCS 2004, pp. 372–381. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  18. 18.
    Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/
  19. 19.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC 2005, pp. 84–93. ACM, New York (2005)Google Scholar
  20. 20.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xavier Boyen
    • 1
  1. 1.Palo Alto Research CenterUSA

Personalised recommendations