The Robust Price of Anarchy of Altruistic Games

  • Po-An Chen
  • Bart de Keijzer
  • David Kempe
  • Guido Schäfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7090)

Abstract

We study the inefficiency of equilibria for several classes of games when players are (partially) altruistic. We model altruistic behavior by assuming that player i’s perceived cost is a convex combination of 1 − α i times his direct cost and α i times the social cost. Tuning the parameters α i allows smooth interpolation between purely selfish and purely altruistic behavior. Within this framework, we study altruistic extensions of cost-sharing games, utility games, and linear congestion games. Our main contribution is an adaptation of Roughgarden’s smoothness notion to altruistic extensions of games. We show that this extension captures the essential properties to determine the robust price of anarchy of these games, and use it to derive mostly tight bounds.

Keywords

Nash Equilibrium Altruistic Behavior Congestion Game Strategic Game Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash Equilibria in Player-Specific and Weighted Congestion Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 50–61. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proc. 45th Symposium on Foundations of Computer Science (2004)Google Scholar
  3. 3.
    Blum, A., Hajiaghayi, M.T., Ligett, K., Roth, A.: Regret minimization and the price of total anarchy. In: Proc. 40th Annual ACM Symposium on Theory of Computing, pp. 373–382 (2008)Google Scholar
  4. 4.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M., Papaioannou, E.: The impact of altruism on the efficiency of atomic congestion games. In: Proc. 5th Symposium on Trustworthy Global Computing (2010)Google Scholar
  5. 5.
    Chen, P.-A., David, M., Kempe, D.: Better vaccination strategies for better people. In: Proc. 12th ACM Conference on Electronic Commerce (2010)Google Scholar
  6. 6.
    Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Proc. 10th ACM Conference on Electronic Commerce, pp. 140–149 (2008)Google Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proc. 37th Annual ACM Symposium on Theory of Computing (2005)Google Scholar
  8. 8.
    Hoefer, M., Skopalik, A.: Altruism in atomic congestion games. In: Proc. 17th European Symposium on Algorithms (2009)Google Scholar
  9. 9.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proc. 16th Annual Symposium on Theoretical Aspects of Computer Science, March 4-6, pp. 404–413 (1999)Google Scholar
  10. 10.
    Ledyard, J.: Public goods: A survey of experimental resesarch. In: Kagel, J., Roth, A. (eds.) Handbook of Experimental Economics, pp. 111–194. Princeton University Press (1997)Google Scholar
  11. 11.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. Theoretical Computer Science 406, 187–206 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  14. 14.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)Google Scholar
  15. 15.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proc. 41st Annual ACM Symposium on Theory of Computing, pp. 513–522 (2009)Google Scholar
  16. 16.
    Vetta, A.: Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In: Proc. 43rd Symposium on Foundations of Computer Science (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Po-An Chen
    • 1
  • Bart de Keijzer
    • 2
  • David Kempe
    • 1
  • Guido Schäfer
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaUSA
  2. 2.Algorithms, Combinatorics and OptimizationCWIAmsterdamThe Netherlands
  3. 3.Dept. of Econometrics and Operations ResearchVU UniversityAmsterdamThe Netherlands

Personalised recommendations