Advertisement

Demand Allocation Games: Integrating Discrete and Continuous Strategy Spaces

  • Tobias Harks
  • Max Klimm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7090)

Abstract

In this paper, we introduce a class of games which we term demand allocation games that combines the characteristics of finite games such as congestion games and continuous games such as Cournot oligopolies. In a strategy profile each player may choose both an action out of a finite set and a non-negative demand out of a convex and compact interval. The utility of each player is assumed to depend solely on the action, the chosen demand, and the aggregated demand on the action chosen. We show that this general class of games possess a pure Nash equilibrium whenever the players’ utility functions satisfy the assumptions negative externality, decreasing marginal returns and homogeneity. If one of the assumptions is violated, then a pure Nash equilibrium may fail to exist. We demonstrate the applicability of our results by giving several concrete examples of games that fit into our model.

Keywords

Partial Equilibrium Congestion Game Indirect Utility Function Pure Nash Equilibrium Cournot Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econom. Behav. 65(2), 289–317 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beckmann, M., McGuire, C., Winsten, C.: Studies in the Economics and Transportation. Yale University Press (1956)Google Scholar
  3. 3.
    Cournot, A.: Recherches Sur Les Principes Mathematiques De La Theorie De La Richesse, Hachette, Paris (1838)Google Scholar
  4. 4.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibrium in load balancing. ACM Trans. Algorithms 3(3), 1–21 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fotakis, D.A., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: The Structure and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theor. Comput. Sci. 348(2-3), 226–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: Proc. 46th Annual IEEE Sympos. Foundations Comput. Sci., pp. 142–154 (2005)Google Scholar
  8. 8.
    Harks, T., Klimm, M.: Congestion games with variable demands. In: Krzysztof, R. (ed.) Proc. 13th Biannual Conf. Theoretical Aspects of Rationality and Knowledge, pp. 111–120 (2011)Google Scholar
  9. 9.
    Harks, T., Klimm, M., Möhring, R.H.: Strong Nash Equilibria in Games with the Lexicographical Improvement Property. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 463–470. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johari, R., Tsitsiklis, J.: Efficiency loss in cournot games. Technical report, LIDS-P-2639, Laboratory for Information and Decision Systems. MIT (2005)Google Scholar
  12. 12.
    Kelly, F., Maulloo, A., Tan, D.: Rate Control in Communication Networks: Shadow Prices, Proportional Fairness, and Stability. J. Oper. Res. Soc. 49, 237–252 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Konishi, H., Le Breton, M., Weber, S.: Equilibria in a model with partial rivalry. J. Econom. Theory 72(1), 225–237 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommun. Syst. 17(4), 385–409 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press (1995)Google Scholar
  16. 16.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econom. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Milchtaich, I.: The Equilibrium Existence Problem in Finite Network Congestion Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 87–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Milinsky, M.: An evolutionary stable feeding strategy in sticklebacks. Z. Tierpsychol. (51), 36–40 (1979)CrossRefGoogle Scholar
  19. 19.
    Nash, J.: Non-cooperative games. PhD thesis. Princteon (1950)Google Scholar
  20. 20.
    Naylor, R.: Pay discrimination and imperfect competition in the labor market. J. Econ. 60(2), 177–188 (1994)CrossRefzbMATHGoogle Scholar
  21. 21.
    Novshek, W.: On the existence of Cournot equilibrium. Rev. Econom. Stud. 52(1), 85–98 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Panagopoulou, P., Spirakis, P.: Algorithms for pure Nash equilibria in weighted congestion games. ACM J. Exp. Algorithmics 11(2.7), 1–19 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Roberts, J., Sonnenschein, H.: On the existence of Cournot equilibrium without concave profit functions. J. Econom. Theory 22, 112–117 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rosen, J.: Existence and uniqueness of equilibrium points in concave n-player games. Econometrica 33(3), 520–534 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rozenfeld, O., Tennenholtz, M.: Strong and Correlated Strong Equilibria in Monotone Congestion Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press (2010)Google Scholar
  28. 28.
    Shenker, S.: Fundamental design issues for the future internet. IEEE J. Sel. Area Comm. 13, 1176–1188 (1995)CrossRefGoogle Scholar
  29. 29.
    Stähler, F., Upmann, T.: Market entry regulation and international competition. Rev. Internat. Econ. 16(4), 611–626 (2008)CrossRefGoogle Scholar
  30. 30.
    Tirole, J.: The Theory of Industrial Organization. MIT Press (1988)Google Scholar
  31. 31.
    Voorneveld, M., Borm, P., van Megen, F., Tijs, S., Facchini, G.: Congestion games and potentials reconsidered. Internat. Game Theory Rev. 1(3-4), 283–299 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Harks
    • 1
  • Max Klimm
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinGermany

Personalised recommendations