Automatic Localization of Pupil Using Histogram Thresholding and Region Based Mask Filter

  • Narayan Sahoo
  • Ganeswara Padhy
  • Nilamani Bhoi
  • Pranati Rautaray
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 395)

Abstract

This paper presents a novel approach for the automatic localization of pupil in which multiscale edge detection approach has been employed as a preprocessing step to efficiently localize the pupil followed by a new feature extraction technique which is based on a combination of some multiscale feature extraction techniques. Then pupil is localized using histogram thresholding and filter mask which looks for the region that has the highest probability of having pupil. Here some effort has given for the removal of the effect of hairs on eyelashes and eye brows by the help of a region based averaging filtering. The proposed method is tested on CASIA database. Experimental results show that this method is comparatively accurate.

Keywords

Histogram thresholding segmentation morphological operation mask filtering edge detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tian, Y., Kanade, T., Cohn, J.F.: Dual-state Parametric Eye Tracking. In: Proc. Of Int. Conf. Face and Gesture Recognition, pp. 110–115 (2000)Google Scholar
  2. 2.
    Cheung, R., Frecker, C.: Estimation of Ocular Torsion with Dynamic Changes in Pupil Size. In: Proc. of IEEE Eng. in Med. Bid. 16th Annu., vol. 2, pp. 924–925 (1994)Google Scholar
  3. 3.
    Kim, J., Park, K.: An image processing method for improved pupil size estimation accuracy. In: Proc. of the 25th Annual International Conference of the IEEE EMBS (2003)Google Scholar
  4. 4.
    Iskander, D., Collins, R., et al.: Automatic pupillometry from digital images. IEEE Transactions on Biomedical Engineering 51(9), 1619–1627 (2004)CrossRefGoogle Scholar
  5. 5.
    Kim, S.I., Lee, D.K., Kim, S.Y., Kwon, O.S., Cho, J.: An algorithm to Detect a Center of Pupil for Extraction of Point of Gaze. In: Proc. of the 26th Annual International Conference of the IEEE EMBS (2004)Google Scholar
  6. 6.
    Wildes, R.P.: Iris Recognition: An Emerging Biometric Technology. Proceedings of the IEEE 85(9), 1347–1347 (1997)CrossRefGoogle Scholar
  7. 7.
    Daugman, J.: How Iris Recognition Works. IEEE Trans. Circuits Syst. Video Techn. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  8. 8.
    Ritter, N., Owens, R.A., Saarloos, P.P.V., Cooper, J.: Location of The Pupil-iris Border in Slit-lamp Images of The Cornea. ICIAP, 740–745 (1999)Google Scholar
  9. 9.
    Iskander, D.R., Collins, M.J., Mioschek, S., Trunk, M.: Automatic pupillometry from digital images. IEEE Transactions on Biomedical Engineering 51, 1619–1627 (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, S.I., Lee, D.K., Kim, S.Y., Kwon, O.S., Cho, J.: An algorithm to detect a center of pupil for extraction of point of gaze. In: Proceedings of the 26th Annual International Conference of the IEEEE MBS (2004); Belcher, C., Du, Y.: Region-based SIFT approach to iris recognition. Optics and Lasers in Engineering 139–147 (2008) Google Scholar
  11. 11.
    Kim, J., Park, K.: An image processing method for improved pupil size estimation accuracy. In: Proceedings of the 25th Annual International Conference of the IEEEE MBS, vol. 2 (2003)Google Scholar
  12. 12.
    Cassin, B., Solomon, S.: Dictionary of eye terminology. Triad Publishing Company, Gainsville (1990)Google Scholar
  13. 13.
    Khan, T.M., Khan, M.A., Mallick, S.A., Khan, S.A., Bashir, T., Dar, A.H.: Automatic Locazation of pupil using eccentricity and iris using gradient based method. In: Optics and Lasers in Engg., vol. 49, pp. 177–187 (2011)Google Scholar
  14. 14.
    Daugman, J.G.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  15. 15.
    Kooshkestani, S., Pooyan, M., Sadjedi, H.: A New Method for Iris Recognition Systems Based on Fast Pupil Localization. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 555–564. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Narayan Sahoo
    • 1
  • Ganeswara Padhy
    • 1
  • Nilamani Bhoi
    • 2
  • Pranati Rautaray
    • 3
  1. 1.E&TCC.V. Raman Polytechnic, BBSRBhubaneswarIndia
  2. 2.Dept. of AE&IITER S’O’A’ UniversityBhubaneswarIndia
  3. 3.CSEC.V.R.P. BBSRBhubaneswarIndia

Personalised recommendations