Hybrid Image Mining Methods to Classify the Abnormality in Complete Field Image Mammograms Based on Normal Regions

  • Aswini Kumar Mohanty
  • P. K. Champati
  • Manas Rajan Senapati
  • Saroj Kumar Lena
Part of the Studies in Computational Intelligence book series (SCI, volume 395)


Breast Cancer now becomes a common disease among woman in developing as well as developed countries. Many non-invasive methodologies have been used to detect breast cancer. Computer Aided diagnosis through, Mammography is a widely used as a screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. We present a new method for complete total image of mammogram analysis. A mammogram is analyzed region by region and is classified as normal or abnormal. We present a hybrid technique for extracting features that can be used to distinguish normal and abnormal regions of a mammogram. We describe our classifier technique that uses a unique re-classification method to boost the classification performance. Our proposed hybrid technique comprises decision tree followed by association rule miner shows most proficient and promising performance with high classification rate compared to many other classifiers. We have tested this technique on a set of ground-truth complete total image of mammograms and the result was quite effective.


Mammogram feature extraction data mining classifier decision tree association rule mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beam, C., Layde, P., Sullivan, D.: Variability in the interpretation of screening mammograms by us radiologists, findings from a national sample. Archives of Internal Medicine 156, 209–213 (1996)CrossRefGoogle Scholar
  2. 2.
    Thurfjell, E.L., Lernevall, K.A., Taube, A.S.: Benefit of independent double reading in a population based mammography screening program. Radiology 191, 241–244 (1994)Google Scholar
  3. 3.
    Lo, J.Y., Baker, J.A., Kornguth, P.J., Iglehart, J.D., Floyd, C.E.: Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features. Radiology 203, 159–163 (1997)Google Scholar
  4. 4.
    Heath, M., Bowyer, K.W., Kopans, D., Moore, R., Kegelmeyer, Jr., P.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, June 11-14, pp. 212–218 (2000)Google Scholar
  5. 5.
    Ojala, T., Näppi, J., Nevalainen, O.: Accurate segmentation of the breast region from digitized mammograms. Computerized Medical Imaging and Graphics 25, 47–59 (2001)CrossRefGoogle Scholar
  6. 6.
    Highnam, R., Brady, M.: Mammographic Image Analysis. Kluwer Academic Publishers, Dordrecht (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Ferrari, R.J., de Carvalho, A.C.P.L.F., Marques, P.M.A., Frere, A.F.: Computerized classification of breast lesions: shape and texture analysis using an artificial neural network. Image Process. Appl., 517–521 (1999)Google Scholar
  8. 8.
    Liu, S.: The Analysis of Digital Mammograms: “Spiculated Tumor Detection and Normal Mammogram Characterization”, Ph.D. Thesis, School of Electrical and Computer Engineering. Purdue University (May 1999)Google Scholar
  9. 9.
    Ferrari, R.J., Rangayyan, R.M., Desautels, J.E.L., Frere, A.F.: Analysis of Asymmetry in Mammograms via Directional Filtering With Gabor Wavelets. IEEE Transactions on Medical Imaging 20, 953–964 (2001)CrossRefGoogle Scholar
  10. 10.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transaction On Systems, Man, and Cybernetics SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  11. 11.
    Diaz, L.K., Sneige, N.: Estrogen receptor analysis for breast cancer: Current issues and keys to increasing testing accuracy. Advance Anat. Pathol. 12, 10–19 (2005)CrossRefGoogle Scholar
  12. 12.
    Conners, R.W., Trivedi, M.M., Harlow, C.A.: Segmentation of a high-resolution urban scene using texture operators. Computer Vision, Graphics and Image Processing 25(3), 273–310 (1984)CrossRefGoogle Scholar
  13. 13.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. On Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  14. 14.
    Kovaøcević, J., Vetterli, M.: Non separable multidimensional perfect reconstruction filter banks and wavelet bases for Rn. IEEE Transactions on Information Theory 38(2), 535–555 (1992)Google Scholar
  15. 15.
    Wolpert, D.: Stacked generalization. Neural Networks 5 (1992)Google Scholar
  16. 16.
    Pratikakis, I., Karahaliou, A., Vassiou, K., Virvilis, V., Kosmopoulos, D.: eMedl”Web-Based E-Training For Multimodal Breast Imaging. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 25 (November 2007)Google Scholar
  17. 17.
    Holden, N., Freitas, A.: A Hybrid PSO/ACO Algorithm for Discovering Classification Rules in Data Mining. Journal of Artificial Evolution and Applications (JAEA) (2008)Google Scholar
  18. 18.
    Gelfand, S.B., Ravishankar, C.S., Delp, E.J.: An iterative growing and pruning algorithm for classification tree design. IEEE Transaction on Pattern Analysis Machine Intelligence 13, 163–174 (1991)CrossRefGoogle Scholar
  19. 19.
    Mosavi, A.: Multiple Criteria Decision-Making Preprocessing Using Data Mining Tools. IJCSI International Journal of Computer Science Issues 7(2(1)) (March 2010)Google Scholar
  20. 20.
    Roselin, R., Thangavel, K.: International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE Explore, pp. 1–6 (2010), doi:10.1109/ICCCNT.2010.5592607Google Scholar
  21. 21.
    Tudor, I.: Association Rule Mining as a Data Mining Technique. Seria Matematică - Informatică – Fizică - Buletin 1, 49–56 (2008)MathSciNetGoogle Scholar
  22. 22.
    Antonie, M.-L., Zaïane, O.R., Coman, A.: Application of Data Mining Techniques for Medical Image Classification. In: Proceeding of the Second International Workshop on Multi Media Data Mining in Conjunction with ACM SIGKDD Conference (2001)Google Scholar
  23. 23.
    Kaur, H., Wasan, S.K.: Empirical Study on Applications of Data Mining Techniques in Healthcare. Journal of Computer Science (2), 194–200 (2006)CrossRefGoogle Scholar
  24. 24.
    Somol, P., Pudil, P., Novovicova, J., Paclik, P.: Adaptive floating search methods in feature selection. Pattern Recognition Letters 20, 1157–1163 (1999)CrossRefGoogle Scholar
  25. 25.
    Haindl, M., Somol, P., Ververidis, D., Kotropoulos, C.: Feature Selection Based on Mutual Correlation. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 569–577. Springer, Heidelberg (2006), doi:10.1007/11892755_59CrossRefGoogle Scholar
  26. 26.
    Masala, G.L., Tangaro, S., Golosio, B., Oliva, P., Stumbo, S., Bellotti, R., de Carlo, F., Gargano, G., Cascio, D., Fauci, F., Magro, R., Raso, G., Bottigli, U., Chincarini, A., de Mitri, I., de Nunzio, G., Gori, I., Retico, A., Cerello, P., Cheran, S.C., Fulcheri, C., Lopez Torres, E.: Comparative study of feature classification methods for mass lesion recognition in digitized mammograms. Il Nuovo Cimento C 30(3), 305–316, doi:10.1393/ncc/i2007-10241-yGoogle Scholar
  27. 27.
    de Oliveira Martins, L., Braz, Jr., G., Correa Silva, A., de Paiva, A.C., Gattass, M.: Detection of Masses in Digital Mammograms using K-Means and Support Vector MachineGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aswini Kumar Mohanty
    • 1
  • P. K. Champati
    • 2
  • Manas Rajan Senapati
    • 3
  • Saroj Kumar Lena
    • 4
  1. 1.SOA UniversityBhubaneswarIndia
  2. 2.Department of Computer ScienceABITCuttackIndia
  3. 3.Department of Computer ScienceGandhi Engineering CollegeBhubaneswarIndia
  4. 4.Department of Computer ScienceModi UniversityRajstanIndia

Personalised recommendations